Compare commits
10 Commits
Author | SHA1 | Date | |
---|---|---|---|
ebfea97af7 | |||
ca8c306534 | |||
3168bfffd1 | |||
7f0d74458d | |||
cf8e023b82 | |||
b82e086cbb | |||
5afd2bb498 | |||
5efffd5e96 | |||
40daf46c03 | |||
05c5546c10 |
17
.drone.yml
Normal file
17
.drone.yml
Normal file
@ -0,0 +1,17 @@
|
||||
kind: pipeline
|
||||
type: kubernetes
|
||||
name: default
|
||||
|
||||
steps:
|
||||
# Publish Dev Docker Image
|
||||
- name: publish_docker
|
||||
image: plugins/docker
|
||||
settings:
|
||||
repo: gitea.va.reichard.io/evan/minyma
|
||||
registry: gitea.va.reichard.io
|
||||
tags:
|
||||
- dev
|
||||
username:
|
||||
from_secret: docker_username
|
||||
password:
|
||||
from_secret: docker_password
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -2,6 +2,9 @@ __pycache__
|
||||
.DS_Store
|
||||
.direnv
|
||||
data
|
||||
datasets
|
||||
venv
|
||||
openai_key
|
||||
ha_key
|
||||
minyma.egg-info/
|
||||
NOTES.md
|
||||
|
126
README.md
126
README.md
@ -13,23 +13,98 @@
|
||||
|
||||
---
|
||||
|
||||
AI Chat Bot with Vector / Embedding DB Context
|
||||
AI Chat Bot with Plugins (RAG VectorDB - ChromaDB, DuckDuckGo Search, Home Assistant, Vehicle Lookup, YouTube)
|
||||
|
||||
[](https://drone.va.reichard.io/evan/minyma)
|
||||
|
||||
## Plugins
|
||||
|
||||
### ChromeDB Embeddings / Vectors
|
||||
|
||||
This utilizes a local embeddings DB. This allows you to ask the assistant
|
||||
about local information. [Utilizes Retrieval-Augmented Generation (RAG)](https://arxiv.org/abs/2005.11401).
|
||||
|
||||
```
|
||||
User: What are some common symptoms of COVID-19?
|
||||
Assistant: Some common symptoms of COVID-19 mentioned in the context are
|
||||
fatigue, headache, dyspnea (shortness of breath), anosmia (loss of
|
||||
sense of smell), lower respiratory symptoms, cardiac symptoms,
|
||||
concentration or memory issues, tinnitus and earache, and peripheral
|
||||
neuropathy symptoms.
|
||||
```
|
||||
|
||||
**NOTE:** Instructions on how to load this with your own information are in the
|
||||
"Normalizing & Loading Data" section. We include a PubMed data normalizer as an
|
||||
example.
|
||||
|
||||
### YouTube
|
||||
|
||||
This utilizes `yt-dlp` to download a videos subtitles. Ask questions about YouTube videos!
|
||||
|
||||
```
|
||||
User: Tell me about this youtube video: https://www.youtube.com/watch?v=ZWgr7qP6yhY
|
||||
Assistant: The YouTube video you provided is a review of the new MacBook Pro by
|
||||
Apple. The host discusses the laptop's features, including its new
|
||||
color and chip. They mention that the laptop still retains its ports,
|
||||
HDMI, and high-quality display, but also notes some shortcomings like
|
||||
the notch and lack of face unlock. The host shares their impressions
|
||||
of the new black color [...]
|
||||
```
|
||||
|
||||
### DuckDuckGo
|
||||
|
||||
This utilizes DuckDuckGo Search by scraping the top 5 results.
|
||||
|
||||
```
|
||||
User: Tell me about Evan Reichard
|
||||
Assistant: Evan Reichard is a Principal Detection and Response Engineer based
|
||||
in the Washington DC-Baltimore Area. He has been in this role since
|
||||
August 2022. Evan has created a browser extension that helps SOC
|
||||
analysts and saves them over 300 hours per month. Additionally,
|
||||
there are three professionals named Evan Reichard on LinkedIn and
|
||||
there are also profiles of people named Evan Reichard on Facebook.
|
||||
```
|
||||
|
||||
### Vehicle Lookup API
|
||||
|
||||
This utilizes Carvana's undocumented API to lookup details on a vehicle.
|
||||
|
||||
```
|
||||
User: What vehicle is NY plate HELLO?
|
||||
Assistant: The vehicle corresponding to NY plate HELLO is a 2016 MAZDA CX-5
|
||||
Grand Touring Sport Utility 4D with VIN JM3KE4DY6G0672552.
|
||||
```
|
||||
|
||||
### Home Assistant API
|
||||
|
||||
This utilizes Home Assistants [Conversational API](https://developers.home-assistant.io/docs/intent_conversation_api/).
|
||||
|
||||
```
|
||||
User: Turn off the living room lights
|
||||
Assistant: The living room lights have been turned off. Is there anything else I can assist you with?
|
||||
|
||||
User: Turn on the living room lights
|
||||
Assistant: The living room lights have been turned on successfully.
|
||||
```
|
||||
|
||||
## Running Server
|
||||
|
||||
```bash
|
||||
# Locally (See "Development" Section)
|
||||
export OPENAI_API_KEY=`cat openai_key`
|
||||
export CHROMA_DATA_PATH=/data
|
||||
export HOME_ASSISTANT_API_KEY=`cat ha_key`
|
||||
export HOME_ASSISTANT_URL=https://some-url.com
|
||||
|
||||
minyma server run
|
||||
|
||||
# Docker Quick Start
|
||||
make docker_build_local
|
||||
docker run \
|
||||
-p 5000:5000 \
|
||||
-e OPENAI_API_KEY=`cat openai_key` \
|
||||
-e DATA_PATH=/data \
|
||||
-e CHROMA_DATA_PATH=/data \
|
||||
-v ./data:/data \
|
||||
minyma:latest
|
||||
gitea.va.reichard.io/evan/minyma:latest
|
||||
```
|
||||
|
||||
The server will now be accessible at `http://localhost:5000`
|
||||
@ -44,7 +119,11 @@ and the only supported normalizer is the `pubmed` normalizer.
|
||||
To normalize data, you can use Minyma's `normalize` CLI command:
|
||||
|
||||
```bash
|
||||
minyma normalize --filename ./pubmed_manuscripts.jsonl --normalizer pubmed --database chroma --datapath ./chroma
|
||||
minyma normalize \
|
||||
--normalizer pubmed \
|
||||
--database chroma \
|
||||
--datapath ./data \
|
||||
--filename ./datasets/pubmed_manuscripts.jsonl
|
||||
```
|
||||
|
||||
The above example does the following:
|
||||
@ -59,10 +138,12 @@ The above example does the following:
|
||||
|
||||
## Configuration
|
||||
|
||||
| Environment Variable | Default Value | Description |
|
||||
| -------------------- | ------------- | ---------------------------------------------------------------------------------- |
|
||||
| OPENAI_API_KEY | NONE | Required OpenAI API Key for ChatGPT access. |
|
||||
| DATA_PATH | ./data | The path to the data directory. Chroma will store its data in the `chroma` subdir. |
|
||||
| Environment Variable | Default Value | Description |
|
||||
| ---------------------- | ------------- | ----------------------------------- |
|
||||
| OPENAI_API_KEY | NONE | Required OpenAI API Key for ChatGPT |
|
||||
| CHROMA_DATA_PATH | NONE | ChromaDB Persistent Data Director |
|
||||
| HOME_ASSISTANT_API_KEY | NONE | Home Assistant API Key |
|
||||
| HOME_ASSISTANT_URL | NONE | Home Assistant Instance URL |
|
||||
|
||||
# Development
|
||||
|
||||
@ -74,28 +155,9 @@ python3 -m venv venv
|
||||
# Local Development
|
||||
pip install -e .
|
||||
|
||||
# Creds
|
||||
# Creds & Other Environment Variables
|
||||
export OPENAI_API_KEY=`cat openai_key`
|
||||
|
||||
# Docker
|
||||
make docker_build_local
|
||||
```
|
||||
|
||||
# Notes
|
||||
|
||||
This is the first time I'm doing anything LLM related, so it was an adventure.
|
||||
Initially I was entertaining OpenAI's Embedding API with plans to load embeddings
|
||||
into Pinecone, however initial calculations with `tiktoken` showed that generating
|
||||
embeddings would cost roughly $250 USD.
|
||||
|
||||
Fortunately I found [Chroma](https://www.trychroma.com/), which basically solved
|
||||
both of those issues. It allowed me to load in the normalized data and automatically
|
||||
generated embeddings for me.
|
||||
|
||||
In order to fit into OpenAI ChatGPT's token limit, I limited each document to roughly
|
||||
1000 words. I wanted to make sure I could add the top two matches as context while
|
||||
still having enough headroom for the actual question from the user.
|
||||
|
||||
A few notes:
|
||||
|
||||
- Context is not carried over from previous messages
|
||||
- I "stole" the prompt that is used in LangChain (See `oai.py`). I tried some variations without much (subjective) improvement.
|
||||
- A generalized normalizer format. This should make it fairly easy to use completely different data. Just add a new normalizer that implements the super class.
|
||||
- Basic web front end with TailwindCSS
|
||||
|
@ -1,8 +1,9 @@
|
||||
from os import path
|
||||
import click
|
||||
import signal
|
||||
import sys
|
||||
from importlib.metadata import version
|
||||
from minyma.config import Config
|
||||
from minyma.plugin import PluginLoader
|
||||
from minyma.oai import OpenAIConnector
|
||||
from minyma.vdb import ChromaDB
|
||||
from flask import Flask
|
||||
@ -15,14 +16,15 @@ def signal_handler(sig, frame):
|
||||
|
||||
|
||||
def create_app():
|
||||
global oai, cdb
|
||||
global oai, plugins
|
||||
|
||||
from minyma.config import Config
|
||||
import minyma.api.common as api_common
|
||||
import minyma.api.v1 as api_v1
|
||||
|
||||
app = Flask(__name__)
|
||||
cdb = ChromaDB(Config.DATA_PATH)
|
||||
oai = OpenAIConnector(Config.OPENAI_API_KEY, cdb)
|
||||
oai = OpenAIConnector(Config.OPENAI_API_KEY)
|
||||
plugins = PluginLoader(Config)
|
||||
|
||||
app.register_blueprint(api_common.bp)
|
||||
app.register_blueprint(api_v1.bp)
|
||||
@ -67,7 +69,7 @@ def normalize(filename, normalizer, database, datapath):
|
||||
return print("INVALID NORMALIZER:", normalizer)
|
||||
|
||||
# Process Data
|
||||
vdb.load_documents(norm)
|
||||
vdb.load_documents(norm.name, norm)
|
||||
|
||||
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
|
@ -17,22 +17,19 @@ def get_response():
|
||||
if message == "":
|
||||
return {"error": "Empty Message"}
|
||||
|
||||
oai_response = minyma.oai.query(message)
|
||||
return oai_response
|
||||
resp = minyma.oai.query(message)
|
||||
|
||||
# Return Data
|
||||
return resp
|
||||
|
||||
"""
|
||||
Return the raw vector db related response
|
||||
TODO - Embeds and loads data into the local ChromaDB.
|
||||
|
||||
{
|
||||
"input": "string",
|
||||
"normalizer": "string",
|
||||
}
|
||||
"""
|
||||
@bp.route("/related", methods=["POST"])
|
||||
def get_related():
|
||||
data = request.get_json()
|
||||
if not data:
|
||||
return {"error": "Missing Message"}
|
||||
|
||||
message = str(data.get("message"))
|
||||
if message == "":
|
||||
return {"error": "Empty Message"}
|
||||
|
||||
related_documents = minyma.cdb.get_related(message)
|
||||
return related_documents
|
||||
bp.route("/embed", methods=["POST"])
|
||||
def post_embeddings():
|
||||
pass
|
||||
|
@ -1,11 +1,12 @@
|
||||
import os
|
||||
|
||||
|
||||
def get_env(key, default=None, required=False) -> str:
|
||||
def get_env(key, default=None, required=False) -> str | None:
|
||||
"""Wrapper for gathering env vars."""
|
||||
if required:
|
||||
assert key in os.environ, "Missing Environment Variable: %s" % key
|
||||
return str(os.environ.get(key, default))
|
||||
env = os.environ.get(key, default)
|
||||
return str(env) if env is not None else None
|
||||
|
||||
|
||||
class Config:
|
||||
@ -19,5 +20,7 @@ class Config:
|
||||
OpenAI API Key - Required
|
||||
"""
|
||||
|
||||
DATA_PATH: str = get_env("DATA_PATH", default="./data")
|
||||
OPENAI_API_KEY: str = get_env("OPENAI_API_KEY", required=True)
|
||||
CHROMA_DATA_PATH: str | None = get_env("CHROMA_DATA_PATH", required=False)
|
||||
HOME_ASSISTANT_API_KEY: str | None = get_env("HOME_ASSISTANT_API_KEY", required=False)
|
||||
HOME_ASSISTANT_URL: str | None = get_env("HOME_ASSISTANT_URL", required=False)
|
||||
OPENAI_API_KEY: str | None = get_env("OPENAI_API_KEY", required=True)
|
||||
|
@ -1,12 +1,16 @@
|
||||
from io import TextIOWrapper
|
||||
import json
|
||||
|
||||
class DataNormalizer:
|
||||
class DataNormalizer():
|
||||
def __init__(self, file: TextIOWrapper):
|
||||
pass
|
||||
self.file = file
|
||||
|
||||
def __len__(self) -> int:
|
||||
return 0
|
||||
|
||||
def __iter__(self):
|
||||
pass
|
||||
yield None
|
||||
|
||||
|
||||
class PubMedNormalizer(DataNormalizer):
|
||||
"""
|
||||
@ -14,7 +18,15 @@ class PubMedNormalizer(DataNormalizer):
|
||||
normalized inside the iterator.
|
||||
"""
|
||||
def __init__(self, file: TextIOWrapper):
|
||||
self.file = file
|
||||
self.name = "pubmed"
|
||||
self.file = file
|
||||
self.length = 0
|
||||
|
||||
def __len__(self):
|
||||
last_pos = self.file.tell()
|
||||
self.length = sum(1 for _ in self.file)
|
||||
self.file.seek(last_pos)
|
||||
return self.length
|
||||
|
||||
def __iter__(self):
|
||||
count = 0
|
||||
@ -42,4 +54,10 @@ class PubMedNormalizer(DataNormalizer):
|
||||
count += 1
|
||||
|
||||
# ID = Line Number
|
||||
yield { "doc": norm_text, "id": str(count - 1) }
|
||||
yield {
|
||||
"id": str(count - 1),
|
||||
"doc": norm_text,
|
||||
"metadata": {
|
||||
"file": l.get("file")
|
||||
},
|
||||
}
|
||||
|
143
minyma/oai.py
143
minyma/oai.py
@ -1,44 +1,135 @@
|
||||
from typing import Any
|
||||
from dataclasses import dataclass
|
||||
from textwrap import indent
|
||||
from typing import Any, List
|
||||
import json
|
||||
import minyma
|
||||
import openai
|
||||
|
||||
from minyma.vdb import VectorDB
|
||||
INITIAL_PROMPT_TEMPLATE = """
|
||||
You are connected to various functions that can be used to answer the users questions. Your options are only "functions". Functions should be an array of strings containing the desired function calls (e.g. "function_name()").
|
||||
|
||||
# Stolen LangChain Prompt
|
||||
PROMPT_TEMPLATE = """
|
||||
Use the following pieces of context to answer the question at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to
|
||||
make up an answer.
|
||||
Available Functions:
|
||||
|
||||
{context}
|
||||
{functions}
|
||||
|
||||
Question: {question}
|
||||
Helpful Answer:
|
||||
You must respond in JSON only with no other fluff or bad things will happen. The JSON keys must ONLY be "functions". Be sure to call the functions with the right arguments.
|
||||
|
||||
User Message: {message}
|
||||
"""
|
||||
|
||||
FOLLOW_UP_PROMPT_TEMPLATE = """
|
||||
You are a helpful assistant. This is a follow up message to provide you with more context on a previous user request. Only respond to the user using the following information:
|
||||
|
||||
{response}
|
||||
|
||||
User Message: {message}
|
||||
"""
|
||||
|
||||
@dataclass
|
||||
class ChatCompletion:
|
||||
id: str
|
||||
object: str
|
||||
created: int
|
||||
model: str
|
||||
choices: List[dict]
|
||||
usage: dict
|
||||
|
||||
|
||||
class OpenAIConnector:
|
||||
def __init__(self, api_key: str, vdb: VectorDB):
|
||||
self.vdb = vdb
|
||||
def __init__(self, api_key: str):
|
||||
self.model = "gpt-3.5-turbo"
|
||||
self.word_cap = 1000
|
||||
openai.api_key = api_key
|
||||
|
||||
def query(self, question: str) -> Any:
|
||||
# Get related documents from vector db
|
||||
related = self.vdb.get_related(question)
|
||||
|
||||
# Validate results
|
||||
all_docs = related.get("docs", [])
|
||||
if len(all_docs) == 0:
|
||||
return { "error": "No Context Found" }
|
||||
def query(self, message: str) -> Any:
|
||||
# Track Usage
|
||||
prompt_tokens = 0
|
||||
completion_tokens = 0
|
||||
total_tokens = 0
|
||||
|
||||
# Join on new line, generate main prompt
|
||||
context = '\n'.join(all_docs)
|
||||
prompt = PROMPT_TEMPLATE.format(context = context, question = question)
|
||||
# Get Available Functions
|
||||
functions = "\n".join(list(map(lambda x: "- %s" % x["def"], minyma.plugins.plugin_defs().values())))
|
||||
|
||||
# Query OpenAI ChatCompletion
|
||||
response = openai.ChatCompletion.create(
|
||||
# Create Initial Prompt
|
||||
prompt = INITIAL_PROMPT_TEMPLATE.format(message = message, functions = indent(functions, ' ' * 2))
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
|
||||
print("[OpenAIConnector] Running Initial OAI Query")
|
||||
|
||||
# Run Initial
|
||||
response: ChatCompletion = openai.ChatCompletion.create( # type: ignore
|
||||
model=self.model,
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
messages=messages
|
||||
)
|
||||
|
||||
if len(response.choices) == 0:
|
||||
print("[OpenAIConnector] No Results -> TODO", response)
|
||||
|
||||
content = response.choices[0]["message"]["content"]
|
||||
all_funcs = json.loads(content).get("functions")
|
||||
|
||||
# Update Usage
|
||||
prompt_tokens += response.usage.get("prompt_tokens", 0)
|
||||
completion_tokens += response.usage.get("completion_tokens", 0)
|
||||
total_tokens += response.usage.get("prompt_tokens", 0)
|
||||
|
||||
print("[OpenAIConnector] Completed Initial OAI Query:\n", indent(json.dumps({ "usage": response.usage, "function_calls": all_funcs }, indent=2), ' ' * 2))
|
||||
|
||||
# Build Response Text & Metadata
|
||||
func_metadata = {}
|
||||
func_response = []
|
||||
|
||||
for func in all_funcs:
|
||||
# Execute Requested Function
|
||||
resp = minyma.plugins.execute(func)
|
||||
|
||||
# Unknown Response
|
||||
if resp is None:
|
||||
print("[OpenAIConnector] Invalid Function Response: %s" % func)
|
||||
continue
|
||||
|
||||
# Get Response
|
||||
content = resp.get("content")
|
||||
metadata = resp.get("metadata")
|
||||
error = resp.get("error")
|
||||
|
||||
# Append Responses & Metadata
|
||||
indented_val = indent(content or error or "Unknown Error", ' ' * 2)
|
||||
func_response.append("- %s\n%s" % (func, indented_val))
|
||||
func_metadata[func] = { "metadata": metadata, "error": error }
|
||||
|
||||
func_response = "\n".join(func_response)
|
||||
|
||||
# Create Follow Up Prompt
|
||||
prompt = FOLLOW_UP_PROMPT_TEMPLATE.format(message = message, response = func_response)
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
|
||||
print("[OpenAIConnector] Running Follup Up OAI Query")
|
||||
|
||||
# Run Follow Up
|
||||
response: ChatCompletion = openai.ChatCompletion.create( # type: ignore
|
||||
model=self.model,
|
||||
messages=messages
|
||||
)
|
||||
|
||||
# Update Usage
|
||||
prompt_tokens += response.usage.get("prompt_tokens", 0)
|
||||
completion_tokens += response.usage.get("completion_tokens", 0)
|
||||
total_tokens += response.usage.get("prompt_tokens", 0)
|
||||
|
||||
print("[OpenAIConnector] Completed Follup Up OAI Query:\n", indent(json.dumps({ "usage": response.usage }, indent=2), ' ' * 2))
|
||||
|
||||
# Get Content
|
||||
content = response.choices[0]["message"]["content"]
|
||||
|
||||
# Return Response
|
||||
return response
|
||||
return {
|
||||
"response": content,
|
||||
"functions": func_metadata,
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens
|
||||
}
|
||||
}
|
||||
|
98
minyma/plugin.py
Normal file
98
minyma/plugin.py
Normal file
@ -0,0 +1,98 @@
|
||||
import re
|
||||
import inspect
|
||||
import os
|
||||
import importlib.util
|
||||
|
||||
class MinymaPlugin:
|
||||
pass
|
||||
|
||||
class PluginLoader:
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.plugins = self.get_plugins()
|
||||
self.definitions = self.plugin_defs()
|
||||
|
||||
|
||||
def execute(self, func_cmd):
|
||||
print("[PluginLoader] Execute Function:", func_cmd)
|
||||
|
||||
pattern = r'([a-z_]+)\('
|
||||
|
||||
func_name_search = re.search(pattern, func_cmd)
|
||||
if not func_name_search:
|
||||
return
|
||||
|
||||
func_name = func_name_search.group(1)
|
||||
|
||||
# Not Safe
|
||||
if func_name in self.definitions:
|
||||
args = re.sub(pattern, '(', func_cmd)
|
||||
func = self.definitions[func_name]["func"]
|
||||
return eval("func%s" % args)
|
||||
|
||||
|
||||
def plugin_defs(self):
|
||||
defs = {}
|
||||
for plugin in self.plugins:
|
||||
plugin_name = plugin.name
|
||||
|
||||
for func_obj in plugin.functions:
|
||||
func_name = func_obj.__name__
|
||||
|
||||
signature = inspect.signature(func_obj)
|
||||
params = list(
|
||||
map(
|
||||
lambda x: "%s: %s" % (x.name, x.annotation.__name__),
|
||||
signature.parameters.values()
|
||||
)
|
||||
)
|
||||
|
||||
if func_name in defs:
|
||||
print("[PluginLoader] Error: Duplicate Function: (%s) %s" % (plugin_name, func_name))
|
||||
continue
|
||||
|
||||
func_def = "%s(%s)" % (func_name, ", ".join(params))
|
||||
defs[func_name] = { "func": func_obj, "def": func_def }
|
||||
|
||||
return defs
|
||||
|
||||
|
||||
def get_plugins(self):
|
||||
"""Dynamically load plugins"""
|
||||
# Derive Plugin Folder
|
||||
loader_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
plugin_folder = os.path.join(loader_dir, "plugins")
|
||||
|
||||
# Find Minyma Plugins
|
||||
plugin_classes = []
|
||||
for filename in os.listdir(plugin_folder):
|
||||
|
||||
# Exclude Files
|
||||
if not filename.endswith(".py") or filename == "__init__.py":
|
||||
continue
|
||||
|
||||
# Derive Module Path
|
||||
module_name = os.path.splitext(filename)[0]
|
||||
module_path = os.path.join(plugin_folder, filename)
|
||||
|
||||
# Load Module Dynamically
|
||||
spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||
if spec is None or spec.loader is None:
|
||||
raise ImportError("Unable to dynamically load plugin - %s" % filename)
|
||||
|
||||
# Load & Exec Module
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
|
||||
# Only Process MinymaPlugin SubClasses
|
||||
for _, member in inspect.getmembers(module):
|
||||
if inspect.isclass(member) and issubclass(member, MinymaPlugin) and member != MinymaPlugin:
|
||||
plugin_classes.append(member)
|
||||
|
||||
# Instantiate Plugins
|
||||
plugins = []
|
||||
for cls in plugin_classes:
|
||||
instance = cls(self.config)
|
||||
print("[PluginLoader] %s - Loaded: %d Feature(s)" % (cls.__name__, len(instance.functions)))
|
||||
plugins.append(instance)
|
||||
return plugins
|
3
minyma/plugins/README.md
Normal file
3
minyma/plugins/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# Plugins
|
||||
|
||||
These are plugins that provide OpenAI with functions. Each plugin can define multiple plugins. The plugin loader will automatically derive the function definition. Each function will have the plugin name prepended.
|
53
minyma/plugins/chroma_db.py
Normal file
53
minyma/plugins/chroma_db.py
Normal file
@ -0,0 +1,53 @@
|
||||
from textwrap import indent
|
||||
from minyma.plugin import MinymaPlugin
|
||||
from minyma.vdb import ChromaDB
|
||||
|
||||
|
||||
class ChromaDBPlugin(MinymaPlugin):
|
||||
"""Perform Local VectorDB Lookup
|
||||
|
||||
ChromDB can access multiple "collections". You can add additional functions
|
||||
here that just access a different collection (i.e. different data)
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
self.name = "chroma_db"
|
||||
self.config = config
|
||||
self.word_cap = 1000
|
||||
|
||||
if config.CHROMA_DATA_PATH is None:
|
||||
self.functions = []
|
||||
else:
|
||||
self.vdb = ChromaDB(config.CHROMA_DATA_PATH)
|
||||
self.functions = [self.lookup_pubmed_data]
|
||||
|
||||
|
||||
def __lookup_data(self, collection_name: str, query: str):
|
||||
# Get Related
|
||||
related = self.vdb.get_related(collection_name, query)
|
||||
|
||||
# Get Metadata
|
||||
metadata = [{
|
||||
"id": related.get("ids")[i],
|
||||
"distance": related.get("distances")[i],
|
||||
"metadata": related.get("metadatas")[i],
|
||||
} for i, _ in enumerate(related.get("docs", []))]
|
||||
|
||||
# Normalize Data
|
||||
return list(
|
||||
map(
|
||||
lambda x: " ".join(x.split()[:self.word_cap]),
|
||||
related.get("docs", [])
|
||||
)
|
||||
), metadata
|
||||
|
||||
|
||||
def lookup_pubmed_data(self, query: str):
|
||||
COLLECTION_NAME = "pubmed"
|
||||
documents, metadata = self.__lookup_data(COLLECTION_NAME, query)
|
||||
context = '\n'.join(documents)
|
||||
return {
|
||||
"content": context,
|
||||
"metadata": metadata,
|
||||
"error": None
|
||||
}
|
49
minyma/plugins/duckduckgo.py
Normal file
49
minyma/plugins/duckduckgo.py
Normal file
@ -0,0 +1,49 @@
|
||||
import json
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from minyma.plugin import MinymaPlugin
|
||||
|
||||
HEADERS = {
|
||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:105.0)"
|
||||
" Gecko/20100101 Firefox/105.0",
|
||||
}
|
||||
|
||||
class DuckDuckGoPlugin(MinymaPlugin):
|
||||
"""Search DuckDuckGo"""
|
||||
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.name = "duck_duck_go"
|
||||
self.functions = [self.search_duck_duck_go]
|
||||
|
||||
def search_duck_duck_go(self, query: str):
|
||||
"""Search DuckDuckGo"""
|
||||
resp = requests.get("https://html.duckduckgo.com/html/?q=%s" % query, headers=HEADERS)
|
||||
soup = BeautifulSoup(resp.text, features="html.parser")
|
||||
|
||||
# Get Results
|
||||
results = []
|
||||
for item in soup.select(".result > div"):
|
||||
title_el = item.select_one(".result__title > a")
|
||||
title = title_el.text.strip() if title_el and title_el.text is not None else ""
|
||||
|
||||
description_el = item.select_one(".result__snippet")
|
||||
description = description_el.text.strip() if description_el and description_el.text is not None else ""
|
||||
|
||||
results.append({"title": title, "description": description})
|
||||
|
||||
# Derive Metadata (Title)
|
||||
metadata = {
|
||||
"titles": list(
|
||||
map(
|
||||
lambda x: x.get("title"),
|
||||
results[:5]
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
return {
|
||||
"content": json.dumps(results[:5]),
|
||||
"metadata": metadata,
|
||||
"error": None
|
||||
}
|
47
minyma/plugins/home_assistant.py
Normal file
47
minyma/plugins/home_assistant.py
Normal file
@ -0,0 +1,47 @@
|
||||
import json
|
||||
import urllib.parse
|
||||
import requests
|
||||
from minyma.plugin import MinymaPlugin
|
||||
|
||||
|
||||
class HomeAssistantPlugin(MinymaPlugin):
|
||||
"""Perform Home Assistant Command"""
|
||||
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.name = "home_assistant"
|
||||
self.functions = []
|
||||
|
||||
if config.HOME_ASSISTANT_API_KEY and config.HOME_ASSISTANT_URL:
|
||||
self.functions = [self.home_automation_command]
|
||||
if not config.HOME_ASSISTANT_API_KEY:
|
||||
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_API_KEY")
|
||||
if not config.HOME_ASSISTANT_URL:
|
||||
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_URL")
|
||||
|
||||
def home_automation_command(self, natural_language_command: str):
|
||||
url = urllib.parse.urljoin(self.config.HOME_ASSISTANT_URL, "/api/conversation/process")
|
||||
headers = {
|
||||
"Authorization": "Bearer %s" % self.config.HOME_ASSISTANT_API_KEY,
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
data = {"text": natural_language_command, "language": "en"}
|
||||
resp = requests.post(url, json=data, headers=headers)
|
||||
|
||||
# Parse JSON
|
||||
try:
|
||||
r = resp.json()
|
||||
text = r["response"]["speech"]["plain"]["speech"]
|
||||
|
||||
return {
|
||||
"content": text,
|
||||
"metadata": r,
|
||||
"error": None
|
||||
}
|
||||
except requests.JSONDecodeError:
|
||||
return {
|
||||
"content": None,
|
||||
"metadata": None,
|
||||
"error": "Command Failed"
|
||||
}
|
98
minyma/plugins/vehicle_lookup.py
Normal file
98
minyma/plugins/vehicle_lookup.py
Normal file
@ -0,0 +1,98 @@
|
||||
import json
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from minyma.plugin import MinymaPlugin
|
||||
|
||||
HEADERS = {
|
||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:105.0)"
|
||||
" Gecko/20100101 Firefox/105.0",
|
||||
}
|
||||
|
||||
class VehicleLookupPlugin(MinymaPlugin):
|
||||
"""Search Vehicle Information"""
|
||||
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.name = "vehicle_state_plate"
|
||||
self.functions = [self.lookup_vehicle_by_state_plate]
|
||||
|
||||
def __query_api(self, url, json=None, headers=None):
|
||||
# Perform Request
|
||||
if json is not None:
|
||||
resp = requests.post(url, json=json, headers=headers)
|
||||
else:
|
||||
resp = requests.get(url, headers=headers)
|
||||
|
||||
# Parse Text
|
||||
text = resp.text.strip()
|
||||
|
||||
# Parse JSON
|
||||
try:
|
||||
json = resp.json()
|
||||
return json, text, None
|
||||
except requests.JSONDecodeError:
|
||||
error = None
|
||||
if resp.status_code != 200:
|
||||
error = "Invalid HTTP Response: %s" % resp.status_code
|
||||
else:
|
||||
error = "Invalid JSON"
|
||||
return None, text, error
|
||||
|
||||
|
||||
def lookup_vehicle_by_state_plate(self, state_abbreviation: str, licence_plate: str):
|
||||
CARVANA_URL = (
|
||||
"https://apim.carvana.io/trades/api/v5/vehicleconfiguration/plateLookup/%s/%s"
|
||||
% (state_abbreviation, licence_plate)
|
||||
)
|
||||
|
||||
# Query API
|
||||
json_resp, text_resp, error = self.__query_api(CARVANA_URL, headers=HEADERS)
|
||||
|
||||
# Invalid JSON
|
||||
if json_resp is None:
|
||||
return{
|
||||
"content": None,
|
||||
"metadata": text_resp,
|
||||
"error": error,
|
||||
}
|
||||
|
||||
try:
|
||||
# Check Result
|
||||
status_resp = json_resp.get("status", "Unknown")
|
||||
if status_resp != "Succeeded":
|
||||
if status_resp == "MissingResource":
|
||||
error = "No Results"
|
||||
else:
|
||||
error = "API Error: %s" % status_resp
|
||||
return {
|
||||
"content": None,
|
||||
"metadata": json_resp,
|
||||
"error": error,
|
||||
}
|
||||
|
||||
# Parse Result
|
||||
vehicle_info = json_resp.get("content")
|
||||
vin = vehicle_info.get("vin")
|
||||
year = vehicle_info.get("vehicles")[0].get("year")
|
||||
make = vehicle_info.get("vehicles")[0].get("make")
|
||||
model = vehicle_info.get("vehicles")[0].get("model")
|
||||
trim = vehicle_info.get("vehicles")[0].get("trim")
|
||||
|
||||
except Exception as e:
|
||||
return {
|
||||
"content": None,
|
||||
"metadata": text_resp,
|
||||
"error": "Unknown Error: %s" % e,
|
||||
}
|
||||
|
||||
return {
|
||||
"content": json.dumps({
|
||||
"vin": vin,
|
||||
"year": year,
|
||||
"make": make,
|
||||
"model": model,
|
||||
"trim": trim,
|
||||
}),
|
||||
"metadata": json_resp,
|
||||
"error": None
|
||||
}
|
53
minyma/plugins/youtube.py
Normal file
53
minyma/plugins/youtube.py
Normal file
@ -0,0 +1,53 @@
|
||||
import os
|
||||
from yt_dlp import YoutubeDL
|
||||
import xml.etree.ElementTree as ET
|
||||
from minyma.plugin import MinymaPlugin
|
||||
|
||||
class YouTubePlugin(MinymaPlugin):
|
||||
"""Transcribe YouTube Video"""
|
||||
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.name = "youtube"
|
||||
self.functions = [self.transcribe_youtube]
|
||||
|
||||
|
||||
def transcribe_youtube(self, youtube_video_id: str):
|
||||
URLS = [youtube_video_id]
|
||||
|
||||
vid = YoutubeDL({
|
||||
"skip_download": True,
|
||||
"writesubtitles": True,
|
||||
"writeautomaticsub": True,
|
||||
"subtitleslangs": ["en"],
|
||||
"subtitlesformat": "ttml",
|
||||
"outtmpl": "transcript"
|
||||
})
|
||||
|
||||
vid.download(URLS)
|
||||
content = self.convert_ttml_to_plain_text("transcript.en.ttml")
|
||||
os.remove("transcript.en.ttml")
|
||||
|
||||
return {
|
||||
"content": content,
|
||||
"metadata": URLS,
|
||||
"error": "TTML Conversion Error" if content is None else None
|
||||
}
|
||||
|
||||
|
||||
def convert_ttml_to_plain_text(self, ttml_file_path):
|
||||
try:
|
||||
# Parse the TTML file
|
||||
tree = ET.parse(ttml_file_path)
|
||||
root = tree.getroot()
|
||||
|
||||
# Process Text
|
||||
plain_text = ""
|
||||
for elem in root.iter():
|
||||
if elem.text:
|
||||
plain_text += elem.text + " "
|
||||
|
||||
return plain_text.strip()
|
||||
except ET.ParseError as e:
|
||||
print("[YouTubePlugin] TTML Conversion Error:", e)
|
||||
return None
|
@ -2,10 +2,14 @@
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta
|
||||
name="viewport"
|
||||
content="width=device-width, initial-scale=0.9, user-scalable=no, viewport-fit=cover"
|
||||
/>
|
||||
<title>Minyma - Chat</title>
|
||||
<script src="https://cdn.tailwindcss.com"></script>
|
||||
</head>
|
||||
<body class="bg-slate-900 h-screen p-5 flex flex-col justify-between">
|
||||
<body class="bg-slate-900 h-[100dvh] p-5 flex flex-col justify-between">
|
||||
<header class="w-full">
|
||||
<svg
|
||||
preserveAspectRatio="xMidYMid meet"
|
||||
@ -55,7 +59,7 @@
|
||||
</svg>
|
||||
</header>
|
||||
<main
|
||||
class="flex flex-col justify-between w-11/12 mx-auto bg-slate-700 text-gray-300 rounded p-2 gap-4 h-full"
|
||||
class="flex flex-col justify-between w-11/12 mx-auto bg-slate-700 text-gray-300 rounded p-2 gap-4 h-full overflow-scroll"
|
||||
>
|
||||
<div
|
||||
id="messages"
|
||||
@ -68,41 +72,41 @@
|
||||
</main>
|
||||
<script>
|
||||
const LOADING_SVG = `<svg
|
||||
width="24"
|
||||
height="24"
|
||||
viewBox="0 0 24 24"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="currentColor"
|
||||
>
|
||||
<style>
|
||||
.spinner_qM83 {
|
||||
animation: spinner_8HQG 1.05s infinite;
|
||||
}
|
||||
.spinner_oXPr {
|
||||
animation-delay: 0.1s;
|
||||
}
|
||||
.spinner_ZTLf {
|
||||
animation-delay: 0.2s;
|
||||
}
|
||||
@keyframes spinner_8HQG {
|
||||
0%,
|
||||
57.14% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0.66, 0.66, 1);
|
||||
transform: translate(0);
|
||||
}
|
||||
28.57% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0, 0.66, 0.33);
|
||||
transform: translateY(-6px);
|
||||
}
|
||||
100% {
|
||||
transform: translate(0);
|
||||
}
|
||||
}
|
||||
</style>
|
||||
<circle class="spinner_qM83" cx="4" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_oXPr" cx="12" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_ZTLf" cx="20" cy="12" r="3"></circle>
|
||||
</svg>`;
|
||||
width="24"
|
||||
height="24"
|
||||
viewBox="0 0 24 24"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="currentColor"
|
||||
>
|
||||
<style>
|
||||
.spinner_qM83 {
|
||||
animation: spinner_8HQG 1.05s infinite;
|
||||
}
|
||||
.spinner_oXPr {
|
||||
animation-delay: 0.1s;
|
||||
}
|
||||
.spinner_ZTLf {
|
||||
animation-delay: 0.2s;
|
||||
}
|
||||
@keyframes spinner_8HQG {
|
||||
0%,
|
||||
57.14% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0.66, 0.66, 1);
|
||||
transform: translate(0);
|
||||
}
|
||||
28.57% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0, 0.66, 0.33);
|
||||
transform: translateY(-6px);
|
||||
}
|
||||
100% {
|
||||
transform: translate(0);
|
||||
}
|
||||
}
|
||||
</style>
|
||||
<circle class="spinner_qM83" cx="4" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_oXPr" cx="12" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_ZTLf" cx="20" cy="12" r="3"></circle>
|
||||
</svg>`;
|
||||
|
||||
/**
|
||||
* Wrapper API Call
|
||||
@ -121,9 +125,9 @@
|
||||
// Wrapping Element
|
||||
let wrapEl = document.createElement("div");
|
||||
wrapEl.innerHTML = `<div class="flex">
|
||||
<span class="font-bold w-24 grow-0 shrink-0"></span>
|
||||
<span class="whitespace-break-spaces w-full"></span>
|
||||
</div>`;
|
||||
<span class="font-bold w-24 grow-0 shrink-0"></span>
|
||||
<span class="whitespace-break-spaces w-full"></span>
|
||||
</div>`;
|
||||
|
||||
// Get Elements
|
||||
let nameEl = wrapEl.querySelector("span");
|
||||
@ -154,7 +158,66 @@
|
||||
})
|
||||
.then((data) => {
|
||||
console.log("SUCCESS:", data);
|
||||
content.innerText = data.choices[0].message.content;
|
||||
|
||||
// Create Response Element
|
||||
let responseEl = document.createElement("p");
|
||||
responseEl.setAttribute(
|
||||
"class",
|
||||
"whitespace-break-spaces"
|
||||
// "whitespace-break-spaces border-b pb-3 mb-3"
|
||||
);
|
||||
responseEl.innerText = data.response;
|
||||
|
||||
// Create Context Element
|
||||
let contextEl = document.createElement("div");
|
||||
contextEl.innerHTML = `
|
||||
<h1 class="font-bold">Context:</h1>
|
||||
<ul class="list-disc ml-6"></ul>`;
|
||||
let ulEl = contextEl.querySelector("ul");
|
||||
|
||||
/*
|
||||
// Create Context Links
|
||||
data.context
|
||||
|
||||
// Capture PubMed ID & Distance
|
||||
.map((item) => [
|
||||
item.metadata.file.match("\/(.*)\.txt$"),
|
||||
item.distance,
|
||||
])
|
||||
|
||||
// Filter Non-Matches
|
||||
.filter(([match]) => match)
|
||||
|
||||
// Get Match Value & Round Distance (2)
|
||||
.map(([match, distance]) => [
|
||||
match[1],
|
||||
Math.round(distance * 100) / 100,
|
||||
])
|
||||
|
||||
// Create Links
|
||||
.forEach(([pmid, distance]) => {
|
||||
let newEl = document.createElement("li");
|
||||
let linkEl = document.createElement("a");
|
||||
linkEl.setAttribute("target", "_blank");
|
||||
linkEl.setAttribute(
|
||||
"class",
|
||||
"text-blue-500 hover:text-blue-600"
|
||||
);
|
||||
linkEl.setAttribute(
|
||||
"href",
|
||||
"https://www.ncbi.nlm.nih.gov/pmc/articles/" + pmid
|
||||
);
|
||||
linkEl.textContent = "[" + distance + "] " + pmid;
|
||||
newEl.append(linkEl);
|
||||
ulEl.append(newEl);
|
||||
});
|
||||
*/
|
||||
|
||||
// Add to DOM
|
||||
content.setAttribute("class", "w-full");
|
||||
content.innerHTML = "";
|
||||
content.append(responseEl);
|
||||
// content.append(contextEl);
|
||||
})
|
||||
.catch((e) => {
|
||||
console.log("ERROR:", e);
|
||||
|
@ -1,7 +1,6 @@
|
||||
from chromadb.api import API
|
||||
from itertools import islice
|
||||
from os import path
|
||||
from tqdm.auto import tqdm
|
||||
from tqdm import tqdm
|
||||
from typing import Any, cast
|
||||
import chromadb
|
||||
|
||||
@ -19,57 +18,60 @@ def chunk(iterable, chunk_size: int):
|
||||
VectorDB Interface
|
||||
"""
|
||||
class VectorDB:
|
||||
def load_documents(self, normalizer: DataNormalizer):
|
||||
pass
|
||||
def load_documents(self, name: str, normalizer: DataNormalizer, chunk_size: int = 10):
|
||||
raise NotImplementedError("VectorDB must implement load_documents")
|
||||
|
||||
def get_related(self, question: str) -> Any:
|
||||
pass
|
||||
def get_related(self, name: str, question: str) -> Any:
|
||||
raise NotImplementedError("VectorDB must implement get_related")
|
||||
|
||||
"""
|
||||
ChromaDV VectorDB Type
|
||||
"""
|
||||
class ChromaDB(VectorDB):
|
||||
def __init__(self, base_path: str):
|
||||
chroma_path = path.join(base_path, "chroma")
|
||||
self.client: API = chromadb.PersistentClient(path=chroma_path)
|
||||
self.word_limit = 1000
|
||||
self.collection_name: str = "vdb"
|
||||
self.collection: chromadb.Collection = self.client.create_collection(name=self.collection_name, get_or_create=True)
|
||||
def __init__(self, path: str):
|
||||
self.client: API = chromadb.PersistentClient(path=path)
|
||||
self.word_cap = 2500
|
||||
|
||||
def get_related(self, name: str, question: str) -> Any:
|
||||
# Get or Create Collection
|
||||
collection = chromadb.Collection = self.client.create_collection(name=name, get_or_create=True)
|
||||
|
||||
def get_related(self, question) -> Any:
|
||||
"""Returns line separated related docs"""
|
||||
results = self.collection.query(
|
||||
query_texts=[question],
|
||||
results = collection.query(
|
||||
query_texts=[question.lower()],
|
||||
n_results=2
|
||||
)
|
||||
|
||||
all_docs: list = cast(list, results.get("documents", [[]]))[0]
|
||||
all_metadata: list = cast(list, results.get("metadatas", [[]]))[0]
|
||||
all_distances: list = cast(list, results.get("distances", [[]]))[0]
|
||||
all_ids: list = cast(list, results.get("ids", [[]]))[0]
|
||||
|
||||
return {
|
||||
"distances":all_distances,
|
||||
"distances": all_distances,
|
||||
"metadatas": all_metadata,
|
||||
"docs": all_docs,
|
||||
"ids": all_ids
|
||||
}
|
||||
|
||||
def load_documents(self, normalizer: DataNormalizer):
|
||||
# 10 Item Chunking
|
||||
for items in tqdm(chunk(normalizer, 50)):
|
||||
def load_documents(self, name: str, normalizer: DataNormalizer, chunk_size: int = 10):
|
||||
# Get or Create Collection
|
||||
collection = chromadb.Collection = self.client.create_collection(name=name, get_or_create=True)
|
||||
|
||||
# Load Items
|
||||
length = len(normalizer) / chunk_size
|
||||
for items in tqdm(chunk(normalizer, chunk_size), total=length):
|
||||
ids = []
|
||||
documents = []
|
||||
metadatas = []
|
||||
|
||||
# Limit words per document to accommodate context token limits
|
||||
for item in items:
|
||||
doc = " ".join(item.get("doc").split()[:self.word_limit])
|
||||
documents.append(doc)
|
||||
documents.append(" ".join(item.get("doc").split()[:self.word_cap]))
|
||||
ids.append(item.get("id"))
|
||||
metadatas.append(item.get("metadata", {}))
|
||||
|
||||
# Ideally we parse out metadata from each document
|
||||
# and pass to the metadata kwarg. However, each
|
||||
# document appears to have a slightly different format,
|
||||
# so it's difficult to parse out.
|
||||
self.collection.add(
|
||||
collection.add(
|
||||
ids=ids,
|
||||
documents=documents,
|
||||
ids=ids
|
||||
metadatas=metadatas,
|
||||
)
|
||||
|
@ -15,7 +15,9 @@ dependencies = [
|
||||
"tqdm",
|
||||
"chromadb",
|
||||
"sqlite-utils",
|
||||
"click"
|
||||
"click",
|
||||
"beautifulsoup4",
|
||||
"yt-dlp"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
43
test.html
43
test.html
@ -1,43 +0,0 @@
|
||||
<svg
|
||||
preserveAspectRatio="xMidYMid meet"
|
||||
color-interpolation-filters="sRGB"
|
||||
style="margin: auto"
|
||||
height="80"
|
||||
width="200"
|
||||
viewBox="70 90 200 90"
|
||||
>
|
||||
<g fill="#ebb919" transform="translate(69.05000305175781,91.03400039672852)">
|
||||
<g transform="translate(0,0)">
|
||||
<g transform="scale(1)">
|
||||
<g>
|
||||
<path
|
||||
d="M33.96-30.84L33.96-30.84Q36.48-30.84 38.37-29.88 40.26-28.92 41.46-27.24 42.66-25.56 43.26-23.34 43.86-21.12 43.86-18.54L43.86-18.54 43.86 0 36.66 0 36.66-18.54Q36.66-20.64 35.16-22.14L35.16-22.14Q33.72-23.64 31.56-23.64L31.56-23.64Q29.4-23.64 27.96-22.14L27.96-22.14Q26.46-20.64 26.46-18.54L26.46-18.54 26.46 0 19.26 0 19.26-18.54Q19.26-20.64 17.76-22.14L17.76-22.14Q17.04-22.92 16.11-23.28 15.18-23.64 14.16-23.64L14.16-23.64Q11.94-23.64 10.5-22.14L10.5-22.14Q9-20.64 9-18.54L9-18.54 9 0 1.8 0 1.8-30 9-30 9-27.36Q10.74-28.86 12.66-29.85 14.58-30.84 16.56-30.84L16.56-30.84Q19.26-30.84 21-29.76 22.74-28.68 24.12-26.76L24.12-26.76Q25.74-28.5 28.32-29.67 30.9-30.84 33.96-30.84ZM54.96 0L47.76 0 47.76-30 54.96-30 54.96 0ZM47.76-34.8L47.76-42 54.96-42 54.96-34.8 47.76-34.8ZM74.28-30.84L74.28-30.84Q77.22-30.84 79.62-29.73 82.02-28.62 83.73-26.67 85.44-24.72 86.37-22.14 87.3-19.56 87.3-16.62L87.3-16.62 87.3 0 80.1 0 80.1-16.62Q80.1-19.62 78-21.6L78-21.6Q75.96-23.64 73.08-23.64L73.08-23.64Q70.14-23.64 68.1-21.6L68.1-21.6Q66.06-19.56 66.06-16.62L66.06-16.62 66.06 0 58.86 0 58.86-30 66.06-30 66.06-27.72Q67.68-29.1 69.72-29.97 71.76-30.84 74.28-30.84ZM116.94-30L124.86-30 110.94 0 109.08 4.08Q107.4 7.74 104.04 9.9 100.68 12.06 96.6 12.06L96.6 12.06 93.42 12.06 95.22 4.86 96.96 4.86Q98.7 4.86 100.2 3.9 101.7 2.94 102.42 1.32L102.42 1.32 103.02 0 89.1-30 97.02-30 106.98-8.52 116.94-30ZM159.12-30.84L159.12-30.84Q161.64-30.84 163.53-29.88 165.42-28.92 166.62-27.24 167.82-25.56 168.42-23.34 169.02-21.12 169.02-18.54L169.02-18.54 169.02 0 161.82 0 161.82-18.54Q161.82-20.64 160.32-22.14L160.32-22.14Q158.88-23.64 156.72-23.64L156.72-23.64Q154.56-23.64 153.12-22.14L153.12-22.14Q151.62-20.64 151.62-18.54L151.62-18.54 151.62 0 144.42 0 144.42-18.54Q144.42-20.64 142.92-22.14L142.92-22.14Q142.2-22.92 141.27-23.28 140.34-23.64 139.32-23.64L139.32-23.64Q137.1-23.64 135.66-22.14L135.66-22.14Q134.16-20.64 134.16-18.54L134.16-18.54 134.16 0 126.96 0 126.96-30 134.16-30 134.16-27.36Q135.9-28.86 137.82-29.85 139.74-30.84 141.72-30.84L141.72-30.84Q144.42-30.84 146.16-29.76 147.9-28.68 149.28-26.76L149.28-26.76Q150.9-28.5 153.48-29.67 156.06-30.84 159.12-30.84ZM196.5-30.06L203.7-30.06 203.7 0 196.5 0 196.5-15Q196.5-18.6 193.98-21.12L193.98-21.12Q191.46-23.64 187.86-23.64L187.86-23.64Q186.12-23.64 184.53-22.98 182.94-22.32 181.74-21.12L181.74-21.12Q179.22-18.6 179.22-15L179.22-15Q179.22-11.46 181.74-8.94L181.74-8.94Q182.94-7.68 184.53-7.05 186.12-6.42 187.86-6.42L187.86-6.42Q189.66-6.42 191.1-7.02L191.1-7.02 193.68-0.6Q190.92 0.78 187.26 0.78L187.26 0.78Q183.96 0.78 181.17-0.45 178.38-1.68 176.34-3.84 174.3-6 173.16-8.88 172.02-11.76 172.02-15L172.02-15Q172.02-18.3 173.16-21.18 174.3-24.06 176.34-26.22 178.38-28.38 181.17-29.61 183.96-30.84 187.26-30.84L187.26-30.84Q190.2-30.84 192.48-29.94 194.76-29.04 196.5-27.66L196.5-27.66 196.5-30.06Z"
|
||||
transform="translate(-1.7999999523162842, 42)"
|
||||
></path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g fill="#ebb919" transform="translate(5,60.060001373291016)">
|
||||
<rect
|
||||
x="0"
|
||||
height="1"
|
||||
y="3.434999942779541"
|
||||
width="88.66999673843384"
|
||||
></rect>
|
||||
<rect
|
||||
height="1"
|
||||
y="3.434999942779541"
|
||||
width="88.66999673843384"
|
||||
x="103.22999715805054"
|
||||
></rect>
|
||||
<g transform="translate(91.66999673843384,0)">
|
||||
<g transform="scale(1)">
|
||||
<path
|
||||
d="M4.43-3.20L2.06-3.20L2.44-4.40C2.58-4.84 2.72-5.28 2.84-5.72C2.97-6.15 3.10-6.60 3.22-7.06L3.26-7.06C3.39-6.60 3.52-6.15 3.65-5.72C3.78-5.28 3.91-4.84 4.06-4.40ZM4.68-2.40L5.42 0L6.49 0L3.83-7.87L2.70-7.87L0.04 0L1.06 0L1.81-2.40ZM7.61-7.87L7.61 0L8.60 0L8.60-7.87Z"
|
||||
transform="translate(-0.036000000000000004, 7.872)"
|
||||
></path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 4.1 KiB |
Loading…
x
Reference in New Issue
Block a user