Compare commits

..

No commits in common. "3168bfffd1e367a91d1575a020d893293de21673" and "5afd2bb4984ffa6e5946dfa46c54086e982f6550" have entirely different histories.

16 changed files with 89 additions and 525 deletions

3
.gitignore vendored
View File

@ -2,9 +2,6 @@ __pycache__
.DS_Store .DS_Store
.direnv .direnv
data data
datasets
venv venv
openai_key openai_key
ha_key
minyma.egg-info/ minyma.egg-info/
NOTES.md

100
README.md
View File

@ -13,82 +13,22 @@
--- ---
AI Chat Bot with Plugins (RAG VectorDB - ChromaDB, DuckDuckGo Search, Home Assistant, Vehicle Lookup) AI Chat Bot with Vector / Embedding DB Context
[![Build Status](https://drone.va.reichard.io/api/badges/evan/minyma/status.svg)](https://drone.va.reichard.io/evan/minyma) [![Build Status](https://drone.va.reichard.io/api/badges/evan/minyma/status.svg)](https://drone.va.reichard.io/evan/minyma)
## Plugins
### ChromeDB Embeddings / Vectors
This utilizes a local embeddings DB. This allows you to ask the assistant
about local information. [Utilizes Retrieval-Augmented Generation (RAG)](https://arxiv.org/abs/2005.11401).
```
User: What are some common symptoms of COVID-19?
Assistant: Some common symptoms of COVID-19 mentioned in the context are
fatigue, headache, dyspnea (shortness of breath), anosmia (loss of
sense of smell), lower respiratory symptoms, cardiac symptoms,
concentration or memory issues, tinnitus and earache, and peripheral
neuropathy symptoms.
```
**NOTE:** Instructions on how to load this with your own information are in the
"Normalizing & Loading Data" section. We include a PubMed data normalizer as an
example.
### DuckDuckGo
This utilizes DuckDuckGo Search by scraping the top 5 results.
```
User: Tell me about Evan Reichard
Assistant: Evan Reichard is a Principal Detection and Response Engineer based
in the Washington DC-Baltimore Area. He has been in this role since
August 2022. Evan has created a browser extension that helps SOC
analysts and saves them over 300 hours per month. Additionally,
there are three professionals named Evan Reichard on LinkedIn and
there are also profiles of people named Evan Reichard on Facebook.
```
### Vehicle Lookup API
This utilizes Carvana's undocumented API to lookup details on a vehicle.
```
User: What vehicle is NY plate HELLO?
Assistant: The vehicle corresponding to NY plate HELLO is a 2016 MAZDA CX-5
Grand Touring Sport Utility 4D with VIN JM3KE4DY6G0672552.
```
### Home Assistant API
This utilizes Home Assistants [Conversational API](https://developers.home-assistant.io/docs/intent_conversation_api/).
```
User: Turn off the living room lights
Assistant: The living room lights have been turned off. Is there anything else I can assist you with?
User: Turn on the living room lights
Assistant: The living room lights have been turned on successfully.
```
## Running Server ## Running Server
```bash ```bash
# Locally (See "Development" Section) # Locally (See "Development" Section)
export OPENAI_API_KEY=`cat openai_key` export OPENAI_API_KEY=`cat openai_key`
export CHROMA_DATA_PATH=/data
export HOME_ASSISTANT_API_KEY=`cat ha_key`
export HOME_ASSISTANT_URL=https://some-url.com
minyma server run minyma server run
# Docker Quick Start # Docker Quick Start
docker run \ docker run \
-p 5000:5000 \ -p 5000:5000 \
-e OPENAI_API_KEY=`cat openai_key` \ -e OPENAI_API_KEY=`cat openai_key` \
-e CHROMA_DATA_PATH=/data \ -e DATA_PATH=/data \
-v ./data:/data \ -v ./data:/data \
gitea.va.reichard.io/evan/minyma:latest gitea.va.reichard.io/evan/minyma:latest
``` ```
@ -106,10 +46,10 @@ To normalize data, you can use Minyma's `normalize` CLI command:
```bash ```bash
minyma normalize \ minyma normalize \
--filename ./pubmed_manuscripts.jsonl \
--normalizer pubmed \ --normalizer pubmed \
--database chroma \ --database chroma \
--datapath ./data \ --datapath ./chroma
--filename ./datasets/pubmed_manuscripts.jsonl
``` ```
The above example does the following: The above example does the following:
@ -125,11 +65,9 @@ The above example does the following:
## Configuration ## Configuration
| Environment Variable | Default Value | Description | | Environment Variable | Default Value | Description |
| ---------------------- | ------------- | ----------------------------------- | | -------------------- | ------------- | ---------------------------------------------------------------------------------- |
| OPENAI_API_KEY | NONE | Required OpenAI API Key for ChatGPT | | OPENAI_API_KEY | NONE | Required OpenAI API Key for ChatGPT access. |
| CHROMA_DATA_PATH | NONE | ChromaDB Persistent Data Director | | DATA_PATH | ./data | The path to the data directory. Chroma will store its data in the `chroma` subdir. |
| HOME_ASSISTANT_API_KEY | NONE | Home Assistant API Key |
| HOME_ASSISTANT_URL | NONE | Home Assistant Instance URL |
# Development # Development
@ -141,9 +79,31 @@ python3 -m venv venv
# Local Development # Local Development
pip install -e . pip install -e .
# Creds & Other Environment Variables # Creds
export OPENAI_API_KEY=`cat openai_key` export OPENAI_API_KEY=`cat openai_key`
# Docker # Docker
make docker_build_local make docker_build_local
``` ```
# Notes
This is the first time I'm doing anything LLM related, so it was an adventure.
Initially I was entertaining OpenAI's Embedding API with plans to load embeddings
into Pinecone, however initial calculations with `tiktoken` showed that generating
embeddings would cost roughly $250 USD.
Fortunately I found [Chroma](https://www.trychroma.com/), which basically solved
both of those issues. It allowed me to load in the normalized data and automatically
generated embeddings for me.
In order to fit into OpenAI ChatGPT's token limit, I limited each document to roughly
1000 words. I wanted to make sure I could add the top two matches as context while
still having enough headroom for the actual question from the user.
A few notes:
- Context is not carried over from previous messages
- I "stole" the prompt that is used in LangChain (See `oai.py`). I tried some variations without much (subjective) improvement.
- A generalized normalizer format. This should make it fairly easy to use completely different data. Just add a new normalizer that implements the super class.
- Basic web front end with TailwindCSS

View File

@ -3,7 +3,6 @@ import click
import signal import signal
import sys import sys
from importlib.metadata import version from importlib.metadata import version
from minyma.plugin import PluginLoader
from minyma.oai import OpenAIConnector from minyma.oai import OpenAIConnector
from minyma.vdb import ChromaDB from minyma.vdb import ChromaDB
from flask import Flask from flask import Flask
@ -16,15 +15,15 @@ def signal_handler(sig, frame):
def create_app(): def create_app():
global oai, plugins global oai, vdb
from minyma.config import Config from minyma.config import Config
import minyma.api.common as api_common import minyma.api.common as api_common
import minyma.api.v1 as api_v1 import minyma.api.v1 as api_v1
app = Flask(__name__) app = Flask(__name__)
oai = OpenAIConnector(Config.OPENAI_API_KEY) vdb = ChromaDB(path.join(Config.DATA_PATH, "chroma"))
plugins = PluginLoader(Config) oai = OpenAIConnector(Config.OPENAI_API_KEY, vdb)
app.register_blueprint(api_common.bp) app.register_blueprint(api_common.bp)
app.register_blueprint(api_v1.bp) app.register_blueprint(api_v1.bp)
@ -69,7 +68,7 @@ def normalize(filename, normalizer, database, datapath):
return print("INVALID NORMALIZER:", normalizer) return print("INVALID NORMALIZER:", normalizer)
# Process Data # Process Data
vdb.load_documents(norm.name, norm) vdb.load_documents(norm)
signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGINT, signal_handler)

View File

@ -20,20 +20,24 @@ def get_response():
resp = minyma.oai.query(message) resp = minyma.oai.query(message)
# Derive LLM Data # Derive LLM Data
# llm_resp = resp.get("llm", {}) llm_resp = resp.get("llm", {})
# llm_choices = llm_resp.get("choices", []) llm_choices = llm_resp.get("choices", [])
# Derive VDB Data # Derive VDB Data
# vdb_resp = resp.get("vdb", {}) vdb_resp = resp.get("vdb", {})
# combined_context = [{ combined_context = [{
# "id": vdb_resp.get("ids")[i], "id": vdb_resp.get("ids")[i],
# "distance": vdb_resp.get("distances")[i], "distance": vdb_resp.get("distances")[i],
# "doc": vdb_resp.get("docs")[i], "doc": vdb_resp.get("docs")[i],
# "metadata": vdb_resp.get("metadatas")[i], "metadata": vdb_resp.get("metadatas")[i],
# } for i, _ in enumerate(vdb_resp.get("docs", []))] } for i, _ in enumerate(vdb_resp.get("docs", []))]
# Return Data # Return Data
return resp return {
"response": None if len(llm_choices) == 0 else llm_choices[0].get("message", {}).get("content"),
"context": combined_context,
"usage": llm_resp.get("usage"),
}

View File

@ -19,7 +19,5 @@ class Config:
OpenAI API Key - Required OpenAI API Key - Required
""" """
CHROMA_DATA_PATH: str = get_env("CHROMA_DATA_PATH", required=False) DATA_PATH: str = get_env("DATA_PATH", default="./data")
HOME_ASSISTANT_API_KEY: str = get_env("HOME_ASSISTANT_API_KEY", required=False)
HOME_ASSISTANT_URL: str = get_env("HOME_ASSISTANT_URL", required=False)
OPENAI_API_KEY: str = get_env("OPENAI_API_KEY", required=True) OPENAI_API_KEY: str = get_env("OPENAI_API_KEY", required=True)

View File

@ -18,7 +18,6 @@ class PubMedNormalizer(DataNormalizer):
normalized inside the iterator. normalized inside the iterator.
""" """
def __init__(self, file: TextIOWrapper): def __init__(self, file: TextIOWrapper):
self.name = "pubmed"
self.file = file self.file = file
self.length = 0 self.length = 0

View File

@ -1,125 +1,46 @@
import json from typing import Any
from textwrap import indent
from dataclasses import dataclass
from typing import Any, List
import openai import openai
import minyma
INITIAL_PROMPT_TEMPLATE = """ from minyma.vdb import VectorDB
You are a helpful assistant. You are connected to various external functions that can provide you with more personalized and up-to-date information and have already been granted the permissions to execute these functions at will. DO NOT say you don't have access to real time information, instead attempt to call one or more of the listed functions:
{functions} # Stolen LangChain Prompt
PROMPT_TEMPLATE = """
Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to
make up an answer.
The user will not see your response. You must only respond with a comma separated list of function calls: "FUNCTION_CALLS: function(), function(), etc". It must be prepended by "FUNCTION_CALLS:". {context}
User Message: {question} Question: {question}
Helpful Answer:
""" """
FOLLOW_UP_PROMPT_TEMPLATE = """
You are a helpful assistant. This is a follow up message to provide you with more context on a previous user request. Only respond to the user using the following information:
{response}
User Message: {question}
"""
@dataclass
class ChatCompletion:
id: str
object: str
created: int
model: str
choices: List[dict]
usage: dict
class OpenAIConnector: class OpenAIConnector:
def __init__(self, api_key: str): def __init__(self, api_key: str, vdb: VectorDB):
self.vdb = vdb
self.model = "gpt-3.5-turbo" self.model = "gpt-3.5-turbo"
self.word_cap = 1000 self.word_cap = 1000
openai.api_key = api_key openai.api_key = api_key
def query(self, question: str) -> Any: def query(self, question: str) -> Any:
# Track Usage # Get related documents from vector db
prompt_tokens = 0 related = self.vdb.get_related(question)
completion_tokens = 0
total_tokens = 0
# Get Available Functions # Validate results
functions = "\n".join(list(map(lambda x: "- %s" % x["def"], minyma.plugins.plugin_defs().values()))) all_docs = related.get("docs", [])
if len(all_docs) == 0:
return { "error": "No Context Found" }
# Create Initial Prompt # Join on new line (cap @ word limit), generate main prompt
prompt = INITIAL_PROMPT_TEMPLATE.format(question = question, functions = functions) reduced_docs = list(map(lambda x: " ".join(x.split()[:self.word_cap]), all_docs))
messages = [{"role": "user", "content": prompt}] context = '\n'.join(reduced_docs)
prompt = PROMPT_TEMPLATE.format(context = context, question = question)
print("[OpenAIConnector] Running Initial OAI Query") # Query OpenAI ChatCompletion
response = openai.ChatCompletion.create(
# Run Initial
response: ChatCompletion = openai.ChatCompletion.create( # type: ignore
model=self.model, model=self.model,
messages=messages messages=[{"role": "user", "content": prompt}]
) )
if len(response.choices) == 0:
print("[OpenAIConnector] No Results -> TODO", response)
content = response.choices[0]["message"]["content"]
# Get Called Functions (TODO - Better Validation -> Failback Prompt?)
all_funcs = list(
map(
lambda x: x.strip() if x.endswith(")") else x.strip() + ")",
content.split("FUNCTION_CALLS:")[1].strip().split("),")
)
)
# Update Usage
prompt_tokens += response.usage.get("prompt_tokens", 0)
completion_tokens += response.usage.get("completion_tokens", 0)
total_tokens += response.usage.get("prompt_tokens", 0)
print("[OpenAIConnector] Completed Initial OAI Query:\n", indent(json.dumps({ "usage": response.usage, "function_calls": all_funcs }, indent=2), ' ' * 2))
# Execute Requested Functions
func_responses = {}
for func in all_funcs:
func_responses[func] = minyma.plugins.execute(func)
# Build Response Text
response_content_arr = []
for key, val in func_responses.items():
indented_val = indent(val, ' ' * 2)
response_content_arr.append("- %s\n%s" % (key, indented_val))
response_content = "\n".join(response_content_arr)
# Create Follow Up Prompt
prompt = FOLLOW_UP_PROMPT_TEMPLATE.format(question = question, response = response_content)
messages = [{"role": "user", "content": prompt}]
print("[OpenAIConnector] Running Follup Up OAI Query")
# Run Follow Up
response: ChatCompletion = openai.ChatCompletion.create( # type: ignore
model=self.model,
messages=messages
)
# Update Usage
prompt_tokens += response.usage.get("prompt_tokens", 0)
completion_tokens += response.usage.get("completion_tokens", 0)
total_tokens += response.usage.get("prompt_tokens", 0)
print("[OpenAIConnector] Completed Follup Up OAI Query:\n", indent(json.dumps({ "usage": response.usage }, indent=2), ' ' * 2))
# Get Content
content = response.choices[0]["message"]["content"]
# Return Response # Return Response
return { return { "llm": response, "vdb": related }
"response": content,
"functions": func_responses,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens
}
}

View File

@ -1,98 +0,0 @@
import re
import inspect
import os
import importlib.util
class MinymaPlugin:
pass
class PluginLoader:
def __init__(self, config):
self.config = config
self.plugins = self.get_plugins()
self.definitions = self.plugin_defs()
def execute(self, func_cmd):
print("[PluginLoader] Execute Function:", func_cmd)
pattern = r'([a-z_]+)\('
func_name_search = re.search(pattern, func_cmd)
if not func_name_search:
return
func_name = func_name_search.group(1)
# Not Safe
if func_name in self.definitions:
args = re.sub(pattern, '(', func_cmd)
func = self.definitions[func_name]["func"]
return eval("func%s" % args)
def plugin_defs(self):
defs = {}
for plugin in self.plugins:
plugin_name = plugin.name
for func_obj in plugin.functions:
func_name = func_obj.__name__
signature = inspect.signature(func_obj)
params = list(
map(
lambda x: "%s: %s" % (x.name, x.annotation.__name__),
signature.parameters.values()
)
)
if func_name in defs:
print("[PluginLoader] Error: Duplicate Function: (%s) %s" % (plugin_name, func_name))
continue
func_def = "%s(%s)" % (func_name, ", ".join(params))
defs[func_name] = { "func": func_obj, "def": func_def }
return defs
def get_plugins(self):
"""Dynamically load plugins"""
# Derive Plugin Folder
loader_dir = os.path.dirname(os.path.abspath(__file__))
plugin_folder = os.path.join(loader_dir, "plugins")
# Find Minyma Plugins
plugin_classes = []
for filename in os.listdir(plugin_folder):
# Exclude Files
if not filename.endswith(".py") or filename == "__init__.py":
continue
# Derive Module Path
module_name = os.path.splitext(filename)[0]
module_path = os.path.join(plugin_folder, filename)
# Load Module Dynamically
spec = importlib.util.spec_from_file_location(module_name, module_path)
if spec is None or spec.loader is None:
raise ImportError("Unable to dynamically load plugin - %s" % filename)
# Load & Exec Module
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Only Process MinymaPlugin SubClasses
for _, member in inspect.getmembers(module):
if inspect.isclass(member) and issubclass(member, MinymaPlugin) and member != MinymaPlugin:
plugin_classes.append(member)
# Instantiate Plugins
plugins = []
for cls in plugin_classes:
instance = cls(self.config)
print("[PluginLoader] %s - Loaded: %d Feature(s)" % (cls.__name__, len(instance.functions)))
plugins.append(instance)
return plugins

View File

@ -1,3 +0,0 @@
# Plugins
These are plugins that provide OpenAI with functions. Each plugin can define multiple plugins. The plugin loader will automatically derive the function definition. Each function will have the plugin name prepended.

View File

@ -1,41 +0,0 @@
from textwrap import indent
from minyma.plugin import MinymaPlugin
from minyma.vdb import ChromaDB
class ChromaDBPlugin(MinymaPlugin):
"""Perform Local VectorDB Lookup
ChromDB can access multiple "collections". You can add additional functions
here that just access a different collection (i.e. different data)
"""
def __init__(self, config):
self.name = "chroma_db"
self.config = config
if not config.CHROMA_DATA_PATH:
self.functions = []
else:
self.vdb = ChromaDB(config.CHROMA_DATA_PATH)
self.functions = [self.lookup_pubmed_data]
def __lookup_data(self, collection_name: str, query: str):
# Get Related
related = self.vdb.get_related(collection_name, query)
# Normalize Data
return list(
map(
lambda x: " ".join(x.split()[:self.vdb.word_cap]),
related.get("docs", [])
)
)
def lookup_pubmed_data(self, query: str):
COLLECTION_NAME = "pubmed"
documents = self.__lookup_data(COLLECTION_NAME, query)
context = '\n'.join(documents)
return context

View File

@ -1,34 +0,0 @@
import json
import requests
from bs4 import BeautifulSoup
from minyma.plugin import MinymaPlugin
HEADERS = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:105.0)"
" Gecko/20100101 Firefox/105.0",
}
class DuckDuckGoPlugin(MinymaPlugin):
"""Search DuckDuckGo"""
def __init__(self, config):
self.config = config
self.name = "duck_duck_go"
self.functions = [self.duck_duck_go_search]
def duck_duck_go_search(self, query: str):
"""Search DuckDuckGo"""
resp = requests.get("https://html.duckduckgo.com/html/?q=%s" % query, headers=HEADERS)
soup = BeautifulSoup(resp.text, features="html.parser")
results = []
for item in soup.select(".result > div"):
title_el = item.select_one(".result__title > a")
title = title_el.text.strip() if title_el and title_el.text is not None else ""
description_el = item.select_one(".result__snippet")
description = description_el.text.strip() if description_el and description_el.text is not None else ""
results.append({"title": title, "description": description})
return json.dumps(results[:5])

View File

@ -1,39 +0,0 @@
import json
import urllib.parse
import requests
from minyma.plugin import MinymaPlugin
class HomeAssistantPlugin(MinymaPlugin):
"""Perform Home Assistant Command"""
def __init__(self, config):
self.config = config
self.name = "home_assistant"
if not config.HOME_ASSISTANT_API_KEY or not config.HOME_ASSISTANT_URL:
if not config.HOME_ASSISTANT_API_KEY:
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_API_KEY")
if not config.HOME_ASSISTANT_URL:
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_URL")
self.functions = []
else:
self.functions = [self.home_automation_command]
def home_automation_command(self, natural_language_command: str):
url = urllib.parse.urljoin(self.config.HOME_ASSISTANT_URL, "/api/conversation/process")
headers = {
"Authorization": "Bearer %s" % self.config.HOME_ASSISTANT_API_KEY,
"Content-Type": "application/json",
}
data = {"text": natural_language_command, "language": "en"}
resp = requests.post(url, json=data, headers=headers)
# Parse JSON
try:
return json.dumps(resp.json())
except requests.JSONDecodeError:
return json.dumps({ "error": "Command Failed" })

View File

@ -1,90 +0,0 @@
import json
import requests
from bs4 import BeautifulSoup
from minyma.plugin import MinymaPlugin
HEADERS = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:105.0)"
" Gecko/20100101 Firefox/105.0",
}
class VehicleLookupPlugin(MinymaPlugin):
"""Search Vehicle Information"""
def __init__(self, config):
self.config = config
self.name = "vehicle_state_plate"
self.functions = [self.lookup_vehicle_by_state_plate]
def __query_api(self, url, json=None, headers=None):
# Perform Request
if json is not None:
resp = requests.post(url, json=json, headers=headers)
else:
resp = requests.get(url, headers=headers)
# Parse Text
text = resp.text.strip()
# Parse JSON
try:
json = resp.json()
return json, text, None
except requests.JSONDecodeError:
error = None
if resp.status_code != 200:
error = "Invalid HTTP Response: %s" % resp.status_code
else:
error = "Invalid JSON"
return None, text, error
def lookup_vehicle_by_state_plate(self, state_abbreviation: str, licence_plate: str):
CARVANA_URL = (
"https://apim.carvana.io/trades/api/v5/vehicleconfiguration/plateLookup/%s/%s"
% (state_abbreviation, licence_plate)
)
# Query API
json_resp, text_resp, error = self.__query_api(CARVANA_URL, headers=HEADERS)
# Invalid JSON
if json_resp is None:
return json.dumps({
"error": error,
"response": text_resp,
})
try:
# Check Result
status_resp = json_resp.get("status", "Unknown")
if status_resp != "Succeeded":
if status_resp == "MissingResource":
error = "No Results"
else:
error = "API Error: %s" % status_resp
return {"error": error, "response": text_resp}
# Parse Result
vehicle_info = json_resp.get("content")
vin = vehicle_info.get("vin")
year = vehicle_info.get("vehicles")[0].get("year")
make = vehicle_info.get("vehicles")[0].get("make")
model = vehicle_info.get("vehicles")[0].get("model")
trim = vehicle_info.get("vehicles")[0].get("trim")
except Exception as e:
return json.dumps({
"error": "Unknown Error: %s" % e,
"response": text_resp,
})
return json.dumps({
"result": {
"vin": vin,
"year": year,
"make": make,
"model": model,
"trim": trim,
},
})

View File

@ -163,8 +163,7 @@
let responseEl = document.createElement("p"); let responseEl = document.createElement("p");
responseEl.setAttribute( responseEl.setAttribute(
"class", "class",
"whitespace-break-spaces" "whitespace-break-spaces border-b pb-3 mb-3"
// "whitespace-break-spaces border-b pb-3 mb-3"
); );
responseEl.innerText = data.response; responseEl.innerText = data.response;
@ -175,7 +174,6 @@
<ul class="list-disc ml-6"></ul>`; <ul class="list-disc ml-6"></ul>`;
let ulEl = contextEl.querySelector("ul"); let ulEl = contextEl.querySelector("ul");
/*
// Create Context Links // Create Context Links
data.context data.context
@ -211,13 +209,12 @@
newEl.append(linkEl); newEl.append(linkEl);
ulEl.append(newEl); ulEl.append(newEl);
}); });
*/
// Add to DOM // Add to DOM
content.setAttribute("class", "w-full"); content.setAttribute("class", "w-full");
content.innerHTML = ""; content.innerHTML = "";
content.append(responseEl); content.append(responseEl);
// content.append(contextEl); content.append(contextEl);
}) })
.catch((e) => { .catch((e) => {
console.log("ERROR:", e); console.log("ERROR:", e);

View File

@ -18,11 +18,11 @@ def chunk(iterable, chunk_size: int):
VectorDB Interface VectorDB Interface
""" """
class VectorDB: class VectorDB:
def load_documents(self, name: str, normalizer: DataNormalizer, chunk_size: int = 10): def load_documents(self, normalizer: DataNormalizer):
raise NotImplementedError("VectorDB must implement load_documents") pass
def get_related(self, name: str, question: str) -> Any: def get_related(self, question: str) -> Any:
raise NotImplementedError("VectorDB must implement get_related") pass
""" """
ChromaDV VectorDB Type ChromaDV VectorDB Type
@ -31,13 +31,12 @@ class ChromaDB(VectorDB):
def __init__(self, path: str): def __init__(self, path: str):
self.client: API = chromadb.PersistentClient(path=path) self.client: API = chromadb.PersistentClient(path=path)
self.word_cap = 2500 self.word_cap = 2500
self.collection_name: str = "vdb"
self.collection: chromadb.Collection = self.client.create_collection(name=self.collection_name, get_or_create=True)
def get_related(self, name: str, question: str) -> Any: def get_related(self, question: str) -> Any:
# Get or Create Collection
collection = chromadb.Collection = self.client.create_collection(name=name, get_or_create=True)
"""Returns line separated related docs""" """Returns line separated related docs"""
results = collection.query( results = self.collection.query(
query_texts=[question.lower()], query_texts=[question.lower()],
n_results=2 n_results=2
) )
@ -54,11 +53,7 @@ class ChromaDB(VectorDB):
"ids": all_ids "ids": all_ids
} }
def load_documents(self, name: str, normalizer: DataNormalizer, chunk_size: int = 10): def load_documents(self, normalizer: DataNormalizer, chunk_size: int = 10):
# Get or Create Collection
collection = chromadb.Collection = self.client.create_collection(name=name, get_or_create=True)
# Load Items
length = len(normalizer) / chunk_size length = len(normalizer) / chunk_size
for items in tqdm(chunk(normalizer, chunk_size), total=length): for items in tqdm(chunk(normalizer, chunk_size), total=length):
ids = [] ids = []
@ -70,7 +65,7 @@ class ChromaDB(VectorDB):
ids.append(item.get("id")) ids.append(item.get("id"))
metadatas.append(item.get("metadata", {})) metadatas.append(item.get("metadata", {}))
collection.add( self.collection.add(
ids=ids, ids=ids,
documents=documents, documents=documents,
metadatas=metadatas, metadatas=metadatas,

View File

@ -15,8 +15,7 @@ dependencies = [
"tqdm", "tqdm",
"chromadb", "chromadb",
"sqlite-utils", "sqlite-utils",
"click", "click"
"beautifulsoup4"
] ]
[project.scripts] [project.scripts]