# Usage ## Running Server ```bash # Locally minyma server run # Docker Quick Start make docker_build_local docker run \ -p 5000:5000 \ -e OPENAI_API_KEY=`cat openai_key` \ -e DATA_PATH=/data \ -v ./data:/data \ minyma:latest ``` The server will now be accessible at `http://localhost:5000` ## Normalizing & Loading Data Minyma is designed to be extensible. You can add normalizers and vector db's using the appropriate interfaces defined in `./minyma/normalizer.py` and `./minyma/vdb.py`. At the moment the only supported database is `chroma` and the only supported normalizer is the `pubmed` normalizer. To normalize data, you can use Minyma's `normalize` CLI command: ```bash minyma normalize --filename ./pubmed_manuscripts.jsonl --normalizer pubmed --database chroma --datapath ./chroma ``` The above example does the following: - Uses the `pubmed` normalizer - Normalizes the `./pubmed_manuscripts.jsonl` raw dataset [0] - Loads the output into a `chroma` database and persists the data to the `./chroma` directory **NOTE:** The above dataset took about an hour to normalize on my MPB M2 Max [0] https://huggingface.co/datasets/TaylorAI/pubmed_author_manuscripts/tree/main # Development ```bash # Initiate python3 -m venv venv . ./venv/bin/activate # Local Development pip install -e . # Creds export OPENAI_API_KEY=`cat openai_key` ```