Compare commits

..

4 Commits

Author SHA1 Message Date
ebfea97af7 [add] youtube plugin, [improve] initial prompt (JSON)
All checks were successful
continuous-integration/drone/push Build is passing
2023-11-10 09:19:24 -05:00
ca8c306534 [add] better error handling
All checks were successful
continuous-integration/drone/push Build is passing
2023-11-08 20:52:29 -05:00
3168bfffd1 Merge pull request 'Add Plugins' (#1) from function_plugins into master
All checks were successful
continuous-integration/drone/push Build is passing
Reviewed-on: #1
2023-11-09 00:31:51 +00:00
7f0d74458d [add] migrate chromadb to plugin
All checks were successful
continuous-integration/drone/pr Build is passing
continuous-integration/drone/push Build is passing
2023-11-08 18:35:56 -05:00
11 changed files with 199 additions and 96 deletions

View File

@@ -13,7 +13,7 @@
---
AI Chat Bot with Plugins (RAG VectorDB - ChromaDB, DuckDuckGo Search, Home Assistant, Vehicle Lookup)
AI Chat Bot with Plugins (RAG VectorDB - ChromaDB, DuckDuckGo Search, Home Assistant, Vehicle Lookup, YouTube)
[![Build Status](https://drone.va.reichard.io/api/badges/evan/minyma/status.svg)](https://drone.va.reichard.io/evan/minyma)
@@ -37,6 +37,20 @@ Assistant: Some common symptoms of COVID-19 mentioned in the context are
"Normalizing & Loading Data" section. We include a PubMed data normalizer as an
example.
### YouTube
This utilizes `yt-dlp` to download a videos subtitles. Ask questions about YouTube videos!
```
User: Tell me about this youtube video: https://www.youtube.com/watch?v=ZWgr7qP6yhY
Assistant: The YouTube video you provided is a review of the new MacBook Pro by
Apple. The host discusses the laptop's features, including its new
color and chip. They mention that the laptop still retains its ports,
HDMI, and high-quality display, but also notes some shortcomings like
the notch and lack of face unlock. The host shares their impressions
of the new black color [...]
```
### DuckDuckGo
This utilizes DuckDuckGo Search by scraping the top 5 results.

View File

@@ -19,36 +19,17 @@ def get_response():
resp = minyma.oai.query(message)
# Derive LLM Data
# llm_resp = resp.get("llm", {})
# llm_choices = llm_resp.get("choices", [])
# Derive VDB Data
# vdb_resp = resp.get("vdb", {})
# combined_context = [{
# "id": vdb_resp.get("ids")[i],
# "distance": vdb_resp.get("distances")[i],
# "doc": vdb_resp.get("docs")[i],
# "metadata": vdb_resp.get("metadatas")[i],
# } for i, _ in enumerate(vdb_resp.get("docs", []))]
# Return Data
return resp
"""
Return the raw vector db related response
TODO - Embeds and loads data into the local ChromaDB.
{
"input": "string",
"normalizer": "string",
}
"""
@bp.route("/related", methods=["POST"])
def get_related():
data = request.get_json()
if not data:
return {"error": "Missing Message"}
message = str(data.get("message"))
if message == "":
return {"error": "Empty Message"}
related_documents = minyma.vdb.get_related(message)
return related_documents
bp.route("/embed", methods=["POST"])
def post_embeddings():
pass

View File

@@ -1,11 +1,12 @@
import os
def get_env(key, default=None, required=False) -> str:
def get_env(key, default=None, required=False) -> str | None:
"""Wrapper for gathering env vars."""
if required:
assert key in os.environ, "Missing Environment Variable: %s" % key
return str(os.environ.get(key, default))
env = os.environ.get(key, default)
return str(env) if env is not None else None
class Config:
@@ -19,7 +20,7 @@ class Config:
OpenAI API Key - Required
"""
CHROMA_DATA_PATH: str = get_env("CHROMA_DATA_PATH", required=False)
HOME_ASSISTANT_API_KEY: str = get_env("HOME_ASSISTANT_API_KEY", required=False)
HOME_ASSISTANT_URL: str = get_env("HOME_ASSISTANT_URL", required=False)
OPENAI_API_KEY: str = get_env("OPENAI_API_KEY", required=True)
CHROMA_DATA_PATH: str | None = get_env("CHROMA_DATA_PATH", required=False)
HOME_ASSISTANT_API_KEY: str | None = get_env("HOME_ASSISTANT_API_KEY", required=False)
HOME_ASSISTANT_URL: str | None = get_env("HOME_ASSISTANT_URL", required=False)
OPENAI_API_KEY: str | None = get_env("OPENAI_API_KEY", required=True)

View File

@@ -1,18 +1,20 @@
import json
from textwrap import indent
from dataclasses import dataclass
from textwrap import indent
from typing import Any, List
import openai
import json
import minyma
import openai
INITIAL_PROMPT_TEMPLATE = """
You are a helpful assistant. You are connected to various external functions that can provide you with more personalized and up-to-date information and have already been granted the permissions to execute these functions at will. DO NOT say you don't have access to real time information, instead attempt to call one or more of the listed functions:
You are connected to various functions that can be used to answer the users questions. Your options are only "functions". Functions should be an array of strings containing the desired function calls (e.g. "function_name()").
Available Functions:
{functions}
The user will not see your response. You must only respond with a comma separated list of function calls: "FUNCTION_CALLS: function(), function(), etc". It must be prepended by "FUNCTION_CALLS:".
You must respond in JSON only with no other fluff or bad things will happen. The JSON keys must ONLY be "functions". Be sure to call the functions with the right arguments.
User Message: {question}
User Message: {message}
"""
FOLLOW_UP_PROMPT_TEMPLATE = """
@@ -20,7 +22,7 @@ You are a helpful assistant. This is a follow up message to provide you with mor
{response}
User Message: {question}
User Message: {message}
"""
@dataclass
@@ -32,13 +34,15 @@ class ChatCompletion:
choices: List[dict]
usage: dict
class OpenAIConnector:
def __init__(self, api_key: str):
self.model = "gpt-3.5-turbo"
self.word_cap = 1000
openai.api_key = api_key
def query(self, question: str) -> Any:
def query(self, message: str) -> Any:
# Track Usage
prompt_tokens = 0
completion_tokens = 0
@@ -48,7 +52,7 @@ class OpenAIConnector:
functions = "\n".join(list(map(lambda x: "- %s" % x["def"], minyma.plugins.plugin_defs().values())))
# Create Initial Prompt
prompt = INITIAL_PROMPT_TEMPLATE.format(question = question, functions = functions)
prompt = INITIAL_PROMPT_TEMPLATE.format(message = message, functions = indent(functions, ' ' * 2))
messages = [{"role": "user", "content": prompt}]
print("[OpenAIConnector] Running Initial OAI Query")
@@ -63,14 +67,7 @@ class OpenAIConnector:
print("[OpenAIConnector] No Results -> TODO", response)
content = response.choices[0]["message"]["content"]
# Get Called Functions (TODO - Better Validation -> Failback Prompt?)
all_funcs = list(
map(
lambda x: x.strip() if x.endswith(")") else x.strip() + ")",
content.split("FUNCTION_CALLS:")[1].strip().split("),")
)
)
all_funcs = json.loads(content).get("functions")
# Update Usage
prompt_tokens += response.usage.get("prompt_tokens", 0)
@@ -79,20 +76,33 @@ class OpenAIConnector:
print("[OpenAIConnector] Completed Initial OAI Query:\n", indent(json.dumps({ "usage": response.usage, "function_calls": all_funcs }, indent=2), ' ' * 2))
# Execute Requested Functions
func_responses = {}
for func in all_funcs:
func_responses[func] = minyma.plugins.execute(func)
# Build Response Text & Metadata
func_metadata = {}
func_response = []
# Build Response Text
response_content_arr = []
for key, val in func_responses.items():
indented_val = indent(val, ' ' * 2)
response_content_arr.append("- %s\n%s" % (key, indented_val))
response_content = "\n".join(response_content_arr)
for func in all_funcs:
# Execute Requested Function
resp = minyma.plugins.execute(func)
# Unknown Response
if resp is None:
print("[OpenAIConnector] Invalid Function Response: %s" % func)
continue
# Get Response
content = resp.get("content")
metadata = resp.get("metadata")
error = resp.get("error")
# Append Responses & Metadata
indented_val = indent(content or error or "Unknown Error", ' ' * 2)
func_response.append("- %s\n%s" % (func, indented_val))
func_metadata[func] = { "metadata": metadata, "error": error }
func_response = "\n".join(func_response)
# Create Follow Up Prompt
prompt = FOLLOW_UP_PROMPT_TEMPLATE.format(question = question, response = response_content)
prompt = FOLLOW_UP_PROMPT_TEMPLATE.format(message = message, response = func_response)
messages = [{"role": "user", "content": prompt}]
print("[OpenAIConnector] Running Follup Up OAI Query")
@@ -116,7 +126,7 @@ class OpenAIConnector:
# Return Response
return {
"response": content,
"functions": func_responses,
"functions": func_metadata,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,

View File

@@ -48,7 +48,7 @@ class PluginLoader:
)
if func_name in defs:
print("[PluginLoader] Error: Duplicate Function : (%s) %s" % (plugin_name, func_name))
print("[PluginLoader] Error: Duplicate Function: (%s) %s" % (plugin_name, func_name))
continue
func_def = "%s(%s)" % (func_name, ", ".join(params))

View File

@@ -13,8 +13,9 @@ class ChromaDBPlugin(MinymaPlugin):
def __init__(self, config):
self.name = "chroma_db"
self.config = config
self.word_cap = 1000
if not config.CHROMA_DATA_PATH:
if config.CHROMA_DATA_PATH is None:
self.functions = []
else:
self.vdb = ChromaDB(config.CHROMA_DATA_PATH)
@@ -25,17 +26,28 @@ class ChromaDBPlugin(MinymaPlugin):
# Get Related
related = self.vdb.get_related(collection_name, query)
# Get Metadata
metadata = [{
"id": related.get("ids")[i],
"distance": related.get("distances")[i],
"metadata": related.get("metadatas")[i],
} for i, _ in enumerate(related.get("docs", []))]
# Normalize Data
return list(
map(
lambda x: " ".join(x.split()[:self.vdb.word_cap]),
lambda x: " ".join(x.split()[:self.word_cap]),
related.get("docs", [])
)
)
), metadata
def lookup_pubmed_data(self, query: str):
COLLECTION_NAME = "pubmed"
documents = self.__lookup_data(COLLECTION_NAME, query)
documents, metadata = self.__lookup_data(COLLECTION_NAME, query)
context = '\n'.join(documents)
return context
return {
"content": context,
"metadata": metadata,
"error": None
}

View File

@@ -14,13 +14,14 @@ class DuckDuckGoPlugin(MinymaPlugin):
def __init__(self, config):
self.config = config
self.name = "duck_duck_go"
self.functions = [self.duck_duck_go_search]
self.functions = [self.search_duck_duck_go]
def duck_duck_go_search(self, query: str):
def search_duck_duck_go(self, query: str):
"""Search DuckDuckGo"""
resp = requests.get("https://html.duckduckgo.com/html/?q=%s" % query, headers=HEADERS)
soup = BeautifulSoup(resp.text, features="html.parser")
# Get Results
results = []
for item in soup.select(".result > div"):
title_el = item.select_one(".result__title > a")
@@ -31,4 +32,18 @@ class DuckDuckGoPlugin(MinymaPlugin):
results.append({"title": title, "description": description})
return json.dumps(results[:5])
# Derive Metadata (Title)
metadata = {
"titles": list(
map(
lambda x: x.get("title"),
results[:5]
)
)
}
return {
"content": json.dumps(results[:5]),
"metadata": metadata,
"error": None
}

View File

@@ -10,17 +10,14 @@ class HomeAssistantPlugin(MinymaPlugin):
def __init__(self, config):
self.config = config
self.name = "home_assistant"
self.functions = []
if not config.HOME_ASSISTANT_API_KEY or not config.HOME_ASSISTANT_URL:
if not config.HOME_ASSISTANT_API_KEY:
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_API_KEY")
if not config.HOME_ASSISTANT_URL:
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_URL")
self.functions = []
else:
if config.HOME_ASSISTANT_API_KEY and config.HOME_ASSISTANT_URL:
self.functions = [self.home_automation_command]
if not config.HOME_ASSISTANT_API_KEY:
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_API_KEY")
if not config.HOME_ASSISTANT_URL:
print("[HomeAssistantPlugin] Missing HOME_ASSISTANT_URL")
def home_automation_command(self, natural_language_command: str):
url = urllib.parse.urljoin(self.config.HOME_ASSISTANT_URL, "/api/conversation/process")
@@ -34,6 +31,17 @@ class HomeAssistantPlugin(MinymaPlugin):
# Parse JSON
try:
return json.dumps(resp.json())
r = resp.json()
text = r["response"]["speech"]["plain"]["speech"]
return {
"content": text,
"metadata": r,
"error": None
}
except requests.JSONDecodeError:
return json.dumps({ "error": "Command Failed" })
return {
"content": None,
"metadata": None,
"error": "Command Failed"
}

View File

@@ -50,10 +50,11 @@ class VehicleLookupPlugin(MinymaPlugin):
# Invalid JSON
if json_resp is None:
return json.dumps({
return{
"content": None,
"metadata": text_resp,
"error": error,
"response": text_resp,
})
}
try:
# Check Result
@@ -63,7 +64,11 @@ class VehicleLookupPlugin(MinymaPlugin):
error = "No Results"
else:
error = "API Error: %s" % status_resp
return {"error": error, "response": text_resp}
return {
"content": None,
"metadata": json_resp,
"error": error,
}
# Parse Result
vehicle_info = json_resp.get("content")
@@ -74,17 +79,20 @@ class VehicleLookupPlugin(MinymaPlugin):
trim = vehicle_info.get("vehicles")[0].get("trim")
except Exception as e:
return json.dumps({
return {
"content": None,
"metadata": text_resp,
"error": "Unknown Error: %s" % e,
"response": text_resp,
})
}
return json.dumps({
"result": {
return {
"content": json.dumps({
"vin": vin,
"year": year,
"make": make,
"model": model,
"trim": trim,
},
})
}),
"metadata": json_resp,
"error": None
}

53
minyma/plugins/youtube.py Normal file
View File

@@ -0,0 +1,53 @@
import os
from yt_dlp import YoutubeDL
import xml.etree.ElementTree as ET
from minyma.plugin import MinymaPlugin
class YouTubePlugin(MinymaPlugin):
"""Transcribe YouTube Video"""
def __init__(self, config):
self.config = config
self.name = "youtube"
self.functions = [self.transcribe_youtube]
def transcribe_youtube(self, youtube_video_id: str):
URLS = [youtube_video_id]
vid = YoutubeDL({
"skip_download": True,
"writesubtitles": True,
"writeautomaticsub": True,
"subtitleslangs": ["en"],
"subtitlesformat": "ttml",
"outtmpl": "transcript"
})
vid.download(URLS)
content = self.convert_ttml_to_plain_text("transcript.en.ttml")
os.remove("transcript.en.ttml")
return {
"content": content,
"metadata": URLS,
"error": "TTML Conversion Error" if content is None else None
}
def convert_ttml_to_plain_text(self, ttml_file_path):
try:
# Parse the TTML file
tree = ET.parse(ttml_file_path)
root = tree.getroot()
# Process Text
plain_text = ""
for elem in root.iter():
if elem.text:
plain_text += elem.text + " "
return plain_text.strip()
except ET.ParseError as e:
print("[YouTubePlugin] TTML Conversion Error:", e)
return None

View File

@@ -16,7 +16,8 @@ dependencies = [
"chromadb",
"sqlite-utils",
"click",
"beautifulsoup4"
"beautifulsoup4",
"yt-dlp"
]
[project.scripts]