Compare commits
4 Commits
0.0.1
...
5afd2bb498
| Author | SHA1 | Date | |
|---|---|---|---|
| 5afd2bb498 | |||
| 5efffd5e96 | |||
| 40daf46c03 | |||
| 05c5546c10 |
17
.drone.yml
Normal file
17
.drone.yml
Normal file
@@ -0,0 +1,17 @@
|
||||
kind: pipeline
|
||||
type: kubernetes
|
||||
name: default
|
||||
|
||||
steps:
|
||||
# Publish Dev Docker Image
|
||||
- name: publish_docker
|
||||
image: plugins/docker
|
||||
settings:
|
||||
repo: gitea.va.reichard.io/evan/minyma
|
||||
registry: gitea.va.reichard.io
|
||||
tags:
|
||||
- dev
|
||||
username:
|
||||
from_secret: docker_username
|
||||
password:
|
||||
from_secret: docker_password
|
||||
14
README.md
14
README.md
@@ -15,6 +15,8 @@
|
||||
|
||||
AI Chat Bot with Vector / Embedding DB Context
|
||||
|
||||
[](https://drone.va.reichard.io/evan/minyma)
|
||||
|
||||
## Running Server
|
||||
|
||||
```bash
|
||||
@@ -23,13 +25,12 @@ export OPENAI_API_KEY=`cat openai_key`
|
||||
minyma server run
|
||||
|
||||
# Docker Quick Start
|
||||
make docker_build_local
|
||||
docker run \
|
||||
-p 5000:5000 \
|
||||
-e OPENAI_API_KEY=`cat openai_key` \
|
||||
-e DATA_PATH=/data \
|
||||
-v ./data:/data \
|
||||
minyma:latest
|
||||
gitea.va.reichard.io/evan/minyma:latest
|
||||
```
|
||||
|
||||
The server will now be accessible at `http://localhost:5000`
|
||||
@@ -44,7 +45,11 @@ and the only supported normalizer is the `pubmed` normalizer.
|
||||
To normalize data, you can use Minyma's `normalize` CLI command:
|
||||
|
||||
```bash
|
||||
minyma normalize --filename ./pubmed_manuscripts.jsonl --normalizer pubmed --database chroma --datapath ./chroma
|
||||
minyma normalize \
|
||||
--filename ./pubmed_manuscripts.jsonl \
|
||||
--normalizer pubmed \
|
||||
--database chroma \
|
||||
--datapath ./chroma
|
||||
```
|
||||
|
||||
The above example does the following:
|
||||
@@ -76,6 +81,9 @@ pip install -e .
|
||||
|
||||
# Creds
|
||||
export OPENAI_API_KEY=`cat openai_key`
|
||||
|
||||
# Docker
|
||||
make docker_build_local
|
||||
```
|
||||
|
||||
# Notes
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from os import path
|
||||
import click
|
||||
import signal
|
||||
import sys
|
||||
from importlib.metadata import version
|
||||
from minyma.config import Config
|
||||
from minyma.oai import OpenAIConnector
|
||||
from minyma.vdb import ChromaDB
|
||||
from flask import Flask
|
||||
@@ -15,14 +15,15 @@ def signal_handler(sig, frame):
|
||||
|
||||
|
||||
def create_app():
|
||||
global oai, cdb
|
||||
global oai, vdb
|
||||
|
||||
from minyma.config import Config
|
||||
import minyma.api.common as api_common
|
||||
import minyma.api.v1 as api_v1
|
||||
|
||||
app = Flask(__name__)
|
||||
cdb = ChromaDB(Config.DATA_PATH)
|
||||
oai = OpenAIConnector(Config.OPENAI_API_KEY, cdb)
|
||||
vdb = ChromaDB(path.join(Config.DATA_PATH, "chroma"))
|
||||
oai = OpenAIConnector(Config.OPENAI_API_KEY, vdb)
|
||||
|
||||
app.register_blueprint(api_common.bp)
|
||||
app.register_blueprint(api_v1.bp)
|
||||
|
||||
@@ -17,8 +17,28 @@ def get_response():
|
||||
if message == "":
|
||||
return {"error": "Empty Message"}
|
||||
|
||||
oai_response = minyma.oai.query(message)
|
||||
return oai_response
|
||||
resp = minyma.oai.query(message)
|
||||
|
||||
# Derive LLM Data
|
||||
llm_resp = resp.get("llm", {})
|
||||
llm_choices = llm_resp.get("choices", [])
|
||||
|
||||
# Derive VDB Data
|
||||
vdb_resp = resp.get("vdb", {})
|
||||
combined_context = [{
|
||||
"id": vdb_resp.get("ids")[i],
|
||||
"distance": vdb_resp.get("distances")[i],
|
||||
"doc": vdb_resp.get("docs")[i],
|
||||
"metadata": vdb_resp.get("metadatas")[i],
|
||||
} for i, _ in enumerate(vdb_resp.get("docs", []))]
|
||||
|
||||
# Return Data
|
||||
return {
|
||||
"response": None if len(llm_choices) == 0 else llm_choices[0].get("message", {}).get("content"),
|
||||
"context": combined_context,
|
||||
"usage": llm_resp.get("usage"),
|
||||
}
|
||||
|
||||
|
||||
|
||||
"""
|
||||
@@ -34,5 +54,5 @@ def get_related():
|
||||
if message == "":
|
||||
return {"error": "Empty Message"}
|
||||
|
||||
related_documents = minyma.cdb.get_related(message)
|
||||
related_documents = minyma.vdb.get_related(message)
|
||||
return related_documents
|
||||
|
||||
@@ -1,12 +1,16 @@
|
||||
from io import TextIOWrapper
|
||||
import json
|
||||
|
||||
class DataNormalizer:
|
||||
class DataNormalizer():
|
||||
def __init__(self, file: TextIOWrapper):
|
||||
pass
|
||||
self.file = file
|
||||
|
||||
def __len__(self) -> int:
|
||||
return 0
|
||||
|
||||
def __iter__(self):
|
||||
pass
|
||||
yield None
|
||||
|
||||
|
||||
class PubMedNormalizer(DataNormalizer):
|
||||
"""
|
||||
@@ -14,7 +18,14 @@ class PubMedNormalizer(DataNormalizer):
|
||||
normalized inside the iterator.
|
||||
"""
|
||||
def __init__(self, file: TextIOWrapper):
|
||||
self.file = file
|
||||
self.file = file
|
||||
self.length = 0
|
||||
|
||||
def __len__(self):
|
||||
last_pos = self.file.tell()
|
||||
self.length = sum(1 for _ in self.file)
|
||||
self.file.seek(last_pos)
|
||||
return self.length
|
||||
|
||||
def __iter__(self):
|
||||
count = 0
|
||||
@@ -42,4 +53,10 @@ class PubMedNormalizer(DataNormalizer):
|
||||
count += 1
|
||||
|
||||
# ID = Line Number
|
||||
yield { "doc": norm_text, "id": str(count - 1) }
|
||||
yield {
|
||||
"id": str(count - 1),
|
||||
"doc": norm_text,
|
||||
"metadata": {
|
||||
"file": l.get("file")
|
||||
},
|
||||
}
|
||||
|
||||
@@ -5,8 +5,8 @@ from minyma.vdb import VectorDB
|
||||
|
||||
# Stolen LangChain Prompt
|
||||
PROMPT_TEMPLATE = """
|
||||
Use the following pieces of context to answer the question at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to
|
||||
Use the following pieces of context to answer the question at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to
|
||||
make up an answer.
|
||||
|
||||
{context}
|
||||
@@ -19,6 +19,7 @@ class OpenAIConnector:
|
||||
def __init__(self, api_key: str, vdb: VectorDB):
|
||||
self.vdb = vdb
|
||||
self.model = "gpt-3.5-turbo"
|
||||
self.word_cap = 1000
|
||||
openai.api_key = api_key
|
||||
|
||||
def query(self, question: str) -> Any:
|
||||
@@ -30,8 +31,9 @@ class OpenAIConnector:
|
||||
if len(all_docs) == 0:
|
||||
return { "error": "No Context Found" }
|
||||
|
||||
# Join on new line, generate main prompt
|
||||
context = '\n'.join(all_docs)
|
||||
# Join on new line (cap @ word limit), generate main prompt
|
||||
reduced_docs = list(map(lambda x: " ".join(x.split()[:self.word_cap]), all_docs))
|
||||
context = '\n'.join(reduced_docs)
|
||||
prompt = PROMPT_TEMPLATE.format(context = context, question = question)
|
||||
|
||||
# Query OpenAI ChatCompletion
|
||||
@@ -41,4 +43,4 @@ class OpenAIConnector:
|
||||
)
|
||||
|
||||
# Return Response
|
||||
return response
|
||||
return { "llm": response, "vdb": related }
|
||||
|
||||
@@ -2,10 +2,14 @@
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta
|
||||
name="viewport"
|
||||
content="width=device-width, initial-scale=0.9, user-scalable=no, viewport-fit=cover"
|
||||
/>
|
||||
<title>Minyma - Chat</title>
|
||||
<script src="https://cdn.tailwindcss.com"></script>
|
||||
</head>
|
||||
<body class="bg-slate-900 h-screen p-5 flex flex-col justify-between">
|
||||
<body class="bg-slate-900 h-[100dvh] p-5 flex flex-col justify-between">
|
||||
<header class="w-full">
|
||||
<svg
|
||||
preserveAspectRatio="xMidYMid meet"
|
||||
@@ -55,7 +59,7 @@
|
||||
</svg>
|
||||
</header>
|
||||
<main
|
||||
class="flex flex-col justify-between w-11/12 mx-auto bg-slate-700 text-gray-300 rounded p-2 gap-4 h-full"
|
||||
class="flex flex-col justify-between w-11/12 mx-auto bg-slate-700 text-gray-300 rounded p-2 gap-4 h-full overflow-scroll"
|
||||
>
|
||||
<div
|
||||
id="messages"
|
||||
@@ -68,41 +72,41 @@
|
||||
</main>
|
||||
<script>
|
||||
const LOADING_SVG = `<svg
|
||||
width="24"
|
||||
height="24"
|
||||
viewBox="0 0 24 24"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="currentColor"
|
||||
>
|
||||
<style>
|
||||
.spinner_qM83 {
|
||||
animation: spinner_8HQG 1.05s infinite;
|
||||
}
|
||||
.spinner_oXPr {
|
||||
animation-delay: 0.1s;
|
||||
}
|
||||
.spinner_ZTLf {
|
||||
animation-delay: 0.2s;
|
||||
}
|
||||
@keyframes spinner_8HQG {
|
||||
0%,
|
||||
57.14% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0.66, 0.66, 1);
|
||||
transform: translate(0);
|
||||
}
|
||||
28.57% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0, 0.66, 0.33);
|
||||
transform: translateY(-6px);
|
||||
}
|
||||
100% {
|
||||
transform: translate(0);
|
||||
}
|
||||
}
|
||||
</style>
|
||||
<circle class="spinner_qM83" cx="4" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_oXPr" cx="12" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_ZTLf" cx="20" cy="12" r="3"></circle>
|
||||
</svg>`;
|
||||
width="24"
|
||||
height="24"
|
||||
viewBox="0 0 24 24"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fill="currentColor"
|
||||
>
|
||||
<style>
|
||||
.spinner_qM83 {
|
||||
animation: spinner_8HQG 1.05s infinite;
|
||||
}
|
||||
.spinner_oXPr {
|
||||
animation-delay: 0.1s;
|
||||
}
|
||||
.spinner_ZTLf {
|
||||
animation-delay: 0.2s;
|
||||
}
|
||||
@keyframes spinner_8HQG {
|
||||
0%,
|
||||
57.14% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0.66, 0.66, 1);
|
||||
transform: translate(0);
|
||||
}
|
||||
28.57% {
|
||||
animation-timing-function: cubic-bezier(0.33, 0, 0.66, 0.33);
|
||||
transform: translateY(-6px);
|
||||
}
|
||||
100% {
|
||||
transform: translate(0);
|
||||
}
|
||||
}
|
||||
</style>
|
||||
<circle class="spinner_qM83" cx="4" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_oXPr" cx="12" cy="12" r="3"></circle>
|
||||
<circle class="spinner_qM83 spinner_ZTLf" cx="20" cy="12" r="3"></circle>
|
||||
</svg>`;
|
||||
|
||||
/**
|
||||
* Wrapper API Call
|
||||
@@ -121,9 +125,9 @@
|
||||
// Wrapping Element
|
||||
let wrapEl = document.createElement("div");
|
||||
wrapEl.innerHTML = `<div class="flex">
|
||||
<span class="font-bold w-24 grow-0 shrink-0"></span>
|
||||
<span class="whitespace-break-spaces w-full"></span>
|
||||
</div>`;
|
||||
<span class="font-bold w-24 grow-0 shrink-0"></span>
|
||||
<span class="whitespace-break-spaces w-full"></span>
|
||||
</div>`;
|
||||
|
||||
// Get Elements
|
||||
let nameEl = wrapEl.querySelector("span");
|
||||
@@ -154,7 +158,63 @@
|
||||
})
|
||||
.then((data) => {
|
||||
console.log("SUCCESS:", data);
|
||||
content.innerText = data.choices[0].message.content;
|
||||
|
||||
// Create Response Element
|
||||
let responseEl = document.createElement("p");
|
||||
responseEl.setAttribute(
|
||||
"class",
|
||||
"whitespace-break-spaces border-b pb-3 mb-3"
|
||||
);
|
||||
responseEl.innerText = data.response;
|
||||
|
||||
// Create Context Element
|
||||
let contextEl = document.createElement("div");
|
||||
contextEl.innerHTML = `
|
||||
<h1 class="font-bold">Context:</h1>
|
||||
<ul class="list-disc ml-6"></ul>`;
|
||||
let ulEl = contextEl.querySelector("ul");
|
||||
|
||||
// Create Context Links
|
||||
data.context
|
||||
|
||||
// Capture PubMed ID & Distance
|
||||
.map((item) => [
|
||||
item.metadata.file.match("\/(.*)\.txt$"),
|
||||
item.distance,
|
||||
])
|
||||
|
||||
// Filter Non-Matches
|
||||
.filter(([match]) => match)
|
||||
|
||||
// Get Match Value & Round Distance (2)
|
||||
.map(([match, distance]) => [
|
||||
match[1],
|
||||
Math.round(distance * 100) / 100,
|
||||
])
|
||||
|
||||
// Create Links
|
||||
.forEach(([pmid, distance]) => {
|
||||
let newEl = document.createElement("li");
|
||||
let linkEl = document.createElement("a");
|
||||
linkEl.setAttribute("target", "_blank");
|
||||
linkEl.setAttribute(
|
||||
"class",
|
||||
"text-blue-500 hover:text-blue-600"
|
||||
);
|
||||
linkEl.setAttribute(
|
||||
"href",
|
||||
"https://www.ncbi.nlm.nih.gov/pmc/articles/" + pmid
|
||||
);
|
||||
linkEl.textContent = "[" + distance + "] " + pmid;
|
||||
newEl.append(linkEl);
|
||||
ulEl.append(newEl);
|
||||
});
|
||||
|
||||
// Add to DOM
|
||||
content.setAttribute("class", "w-full");
|
||||
content.innerHTML = "";
|
||||
content.append(responseEl);
|
||||
content.append(contextEl);
|
||||
})
|
||||
.catch((e) => {
|
||||
console.log("ERROR:", e);
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from chromadb.api import API
|
||||
from itertools import islice
|
||||
from os import path
|
||||
from tqdm.auto import tqdm
|
||||
from tqdm import tqdm
|
||||
from typing import Any, cast
|
||||
import chromadb
|
||||
|
||||
@@ -29,47 +28,45 @@ class VectorDB:
|
||||
ChromaDV VectorDB Type
|
||||
"""
|
||||
class ChromaDB(VectorDB):
|
||||
def __init__(self, base_path: str):
|
||||
chroma_path = path.join(base_path, "chroma")
|
||||
self.client: API = chromadb.PersistentClient(path=chroma_path)
|
||||
self.word_limit = 1000
|
||||
def __init__(self, path: str):
|
||||
self.client: API = chromadb.PersistentClient(path=path)
|
||||
self.word_cap = 2500
|
||||
self.collection_name: str = "vdb"
|
||||
self.collection: chromadb.Collection = self.client.create_collection(name=self.collection_name, get_or_create=True)
|
||||
|
||||
def get_related(self, question) -> Any:
|
||||
def get_related(self, question: str) -> Any:
|
||||
"""Returns line separated related docs"""
|
||||
results = self.collection.query(
|
||||
query_texts=[question],
|
||||
query_texts=[question.lower()],
|
||||
n_results=2
|
||||
)
|
||||
|
||||
all_docs: list = cast(list, results.get("documents", [[]]))[0]
|
||||
all_metadata: list = cast(list, results.get("metadatas", [[]]))[0]
|
||||
all_distances: list = cast(list, results.get("distances", [[]]))[0]
|
||||
all_ids: list = cast(list, results.get("ids", [[]]))[0]
|
||||
|
||||
return {
|
||||
"distances":all_distances,
|
||||
"distances": all_distances,
|
||||
"metadatas": all_metadata,
|
||||
"docs": all_docs,
|
||||
"ids": all_ids
|
||||
}
|
||||
|
||||
def load_documents(self, normalizer: DataNormalizer):
|
||||
# 10 Item Chunking
|
||||
for items in tqdm(chunk(normalizer, 50)):
|
||||
def load_documents(self, normalizer: DataNormalizer, chunk_size: int = 10):
|
||||
length = len(normalizer) / chunk_size
|
||||
for items in tqdm(chunk(normalizer, chunk_size), total=length):
|
||||
ids = []
|
||||
documents = []
|
||||
metadatas = []
|
||||
|
||||
# Limit words per document to accommodate context token limits
|
||||
for item in items:
|
||||
doc = " ".join(item.get("doc").split()[:self.word_limit])
|
||||
documents.append(doc)
|
||||
documents.append(" ".join(item.get("doc").split()[:self.word_cap]))
|
||||
ids.append(item.get("id"))
|
||||
metadatas.append(item.get("metadata", {}))
|
||||
|
||||
# Ideally we parse out metadata from each document
|
||||
# and pass to the metadata kwarg. However, each
|
||||
# document appears to have a slightly different format,
|
||||
# so it's difficult to parse out.
|
||||
self.collection.add(
|
||||
ids=ids,
|
||||
documents=documents,
|
||||
ids=ids
|
||||
metadatas=metadatas,
|
||||
)
|
||||
|
||||
43
test.html
43
test.html
@@ -1,43 +0,0 @@
|
||||
<svg
|
||||
preserveAspectRatio="xMidYMid meet"
|
||||
color-interpolation-filters="sRGB"
|
||||
style="margin: auto"
|
||||
height="80"
|
||||
width="200"
|
||||
viewBox="70 90 200 90"
|
||||
>
|
||||
<g fill="#ebb919" transform="translate(69.05000305175781,91.03400039672852)">
|
||||
<g transform="translate(0,0)">
|
||||
<g transform="scale(1)">
|
||||
<g>
|
||||
<path
|
||||
d="M33.96-30.84L33.96-30.84Q36.48-30.84 38.37-29.88 40.26-28.92 41.46-27.24 42.66-25.56 43.26-23.34 43.86-21.12 43.86-18.54L43.86-18.54 43.86 0 36.66 0 36.66-18.54Q36.66-20.64 35.16-22.14L35.16-22.14Q33.72-23.64 31.56-23.64L31.56-23.64Q29.4-23.64 27.96-22.14L27.96-22.14Q26.46-20.64 26.46-18.54L26.46-18.54 26.46 0 19.26 0 19.26-18.54Q19.26-20.64 17.76-22.14L17.76-22.14Q17.04-22.92 16.11-23.28 15.18-23.64 14.16-23.64L14.16-23.64Q11.94-23.64 10.5-22.14L10.5-22.14Q9-20.64 9-18.54L9-18.54 9 0 1.8 0 1.8-30 9-30 9-27.36Q10.74-28.86 12.66-29.85 14.58-30.84 16.56-30.84L16.56-30.84Q19.26-30.84 21-29.76 22.74-28.68 24.12-26.76L24.12-26.76Q25.74-28.5 28.32-29.67 30.9-30.84 33.96-30.84ZM54.96 0L47.76 0 47.76-30 54.96-30 54.96 0ZM47.76-34.8L47.76-42 54.96-42 54.96-34.8 47.76-34.8ZM74.28-30.84L74.28-30.84Q77.22-30.84 79.62-29.73 82.02-28.62 83.73-26.67 85.44-24.72 86.37-22.14 87.3-19.56 87.3-16.62L87.3-16.62 87.3 0 80.1 0 80.1-16.62Q80.1-19.62 78-21.6L78-21.6Q75.96-23.64 73.08-23.64L73.08-23.64Q70.14-23.64 68.1-21.6L68.1-21.6Q66.06-19.56 66.06-16.62L66.06-16.62 66.06 0 58.86 0 58.86-30 66.06-30 66.06-27.72Q67.68-29.1 69.72-29.97 71.76-30.84 74.28-30.84ZM116.94-30L124.86-30 110.94 0 109.08 4.08Q107.4 7.74 104.04 9.9 100.68 12.06 96.6 12.06L96.6 12.06 93.42 12.06 95.22 4.86 96.96 4.86Q98.7 4.86 100.2 3.9 101.7 2.94 102.42 1.32L102.42 1.32 103.02 0 89.1-30 97.02-30 106.98-8.52 116.94-30ZM159.12-30.84L159.12-30.84Q161.64-30.84 163.53-29.88 165.42-28.92 166.62-27.24 167.82-25.56 168.42-23.34 169.02-21.12 169.02-18.54L169.02-18.54 169.02 0 161.82 0 161.82-18.54Q161.82-20.64 160.32-22.14L160.32-22.14Q158.88-23.64 156.72-23.64L156.72-23.64Q154.56-23.64 153.12-22.14L153.12-22.14Q151.62-20.64 151.62-18.54L151.62-18.54 151.62 0 144.42 0 144.42-18.54Q144.42-20.64 142.92-22.14L142.92-22.14Q142.2-22.92 141.27-23.28 140.34-23.64 139.32-23.64L139.32-23.64Q137.1-23.64 135.66-22.14L135.66-22.14Q134.16-20.64 134.16-18.54L134.16-18.54 134.16 0 126.96 0 126.96-30 134.16-30 134.16-27.36Q135.9-28.86 137.82-29.85 139.74-30.84 141.72-30.84L141.72-30.84Q144.42-30.84 146.16-29.76 147.9-28.68 149.28-26.76L149.28-26.76Q150.9-28.5 153.48-29.67 156.06-30.84 159.12-30.84ZM196.5-30.06L203.7-30.06 203.7 0 196.5 0 196.5-15Q196.5-18.6 193.98-21.12L193.98-21.12Q191.46-23.64 187.86-23.64L187.86-23.64Q186.12-23.64 184.53-22.98 182.94-22.32 181.74-21.12L181.74-21.12Q179.22-18.6 179.22-15L179.22-15Q179.22-11.46 181.74-8.94L181.74-8.94Q182.94-7.68 184.53-7.05 186.12-6.42 187.86-6.42L187.86-6.42Q189.66-6.42 191.1-7.02L191.1-7.02 193.68-0.6Q190.92 0.78 187.26 0.78L187.26 0.78Q183.96 0.78 181.17-0.45 178.38-1.68 176.34-3.84 174.3-6 173.16-8.88 172.02-11.76 172.02-15L172.02-15Q172.02-18.3 173.16-21.18 174.3-24.06 176.34-26.22 178.38-28.38 181.17-29.61 183.96-30.84 187.26-30.84L187.26-30.84Q190.2-30.84 192.48-29.94 194.76-29.04 196.5-27.66L196.5-27.66 196.5-30.06Z"
|
||||
transform="translate(-1.7999999523162842, 42)"
|
||||
></path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g fill="#ebb919" transform="translate(5,60.060001373291016)">
|
||||
<rect
|
||||
x="0"
|
||||
height="1"
|
||||
y="3.434999942779541"
|
||||
width="88.66999673843384"
|
||||
></rect>
|
||||
<rect
|
||||
height="1"
|
||||
y="3.434999942779541"
|
||||
width="88.66999673843384"
|
||||
x="103.22999715805054"
|
||||
></rect>
|
||||
<g transform="translate(91.66999673843384,0)">
|
||||
<g transform="scale(1)">
|
||||
<path
|
||||
d="M4.43-3.20L2.06-3.20L2.44-4.40C2.58-4.84 2.72-5.28 2.84-5.72C2.97-6.15 3.10-6.60 3.22-7.06L3.26-7.06C3.39-6.60 3.52-6.15 3.65-5.72C3.78-5.28 3.91-4.84 4.06-4.40ZM4.68-2.40L5.42 0L6.49 0L3.83-7.87L2.70-7.87L0.04 0L1.06 0L1.81-2.40ZM7.61-7.87L7.61 0L8.60 0L8.60-7.87Z"
|
||||
transform="translate(-0.036000000000000004, 7.872)"
|
||||
></path>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 4.1 KiB |
Reference in New Issue
Block a user